Genetic Programming in Data Modelling

  • Halina Kwasnicka
  • Ewa Szpunar-Huk
Part of the Studies in Computational Intelligence book series (SCI, volume 13)


Genetic Programming Time Series Modelling Prediction Task Symbolic Regression Average Percentage Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Keijzer M (2002), Scientific Discovery Using Genetic Programming. PhD Thesis, Danish Technical University, LyngbyGoogle Scholar
  2. 2.
    Koza JR (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT PressGoogle Scholar
  3. 3.
    Koza JR (1991), A genetic approach to econometric modelling. In: Bourgine P, Walliser B (eds), Economics and Cognitive Science. Pergamon Press, OxfordGoogle Scholar
  4. 4.
    Montana DJ (1995), Strongly typed genetic programming. Evolutionary Computation 3(2):199–230Google Scholar
  5. 5.
    Raidl GR (1998), A Hybrid GP Approach for Numerically Robust Symbolic Regression. Proc. of the 1998 Genetic Programming Conference, Madison, WisconsinGoogle Scholar
  6. 6.
    Sugimoto M, Kikuchi S, Tomita M (2003), Prediction of Biochemical Reactions Using Genetic Programming. Genome Informatics 14: 637–638Google Scholar
  7. 7.
    Langdon WB, Barrett SJ (2004), Genetic Programming in Data Mining for Drug Discovery. In: Ghosh A, Jain LC (eds), Evolutionary Computing in Data Mining. SpringerGoogle Scholar
  8. 8.
    Makarov DE, Metiu H (2000), Using Genetic Programming To Solve the Schrodinger Equation. The Journal of Physical Chemistry A 104 8540–8545CrossRefGoogle Scholar
  9. 9.
    Turton I, Openshaw S, Diplock G (1996), Some Geographical Applications of Genetic Programming on the Cray T3D Supercomputer. Proc. of UKPAR’96, Jessope, Shafarenko (eds)Google Scholar
  10. 10.
    Freitas AA (2002), Data Mining and Knowledge Discovery with Evolutionary Algorightms. Springer-VerlagGoogle Scholar
  11. 11.
    Mallinson H, Bentley P (1999), Evolving Fuzzy Rules for Pattern Classification. Computational Integration for Modelling. Control and Automation’ 99, Masoud Mohammadian, IOS PressGoogle Scholar
  12. 12.
    Bojarczuk CE, Lopes HS, Freitas AA (2001), Data mining with constrainedsyntax genetic programming: applications in medical data sets. Proc. Intelligent Data Analysis in Medicine and Pharmacology, LondonGoogle Scholar
  13. 13.
    Koza JR (1991), Concept formation and decision tree induction using the genetic programming paradigm. In: Schwefel H P, Mnner R (eds), Parallel Problem Solving from Nature. Springer-Verlag, BerlinGoogle Scholar
  14. 14.
    Freitas AA (2002), A survey of evolutionary algorithms for data mining and knowledge discovery. Ghosh A, Tsutsui S. (eds.) Advances in Evolutionary Computation. Springer-VerlagGoogle Scholar
  15. 15.
    Noda E, Freitas AA, Lopes HS (1999), Discovering interesting prediction rules with a genetic algorithm. Conference Evolutionary Computation (CEC-99), WashingtonGoogle Scholar
  16. 16.
    Ross J, Fueten F, Yashkir DY (2001), Automatic mineral identification using genetic programming. Machine Vision and Applications 13: 61–69, Springer-VerlagCrossRefGoogle Scholar
  17. 17.
    Thompson S, Fueten F, Bockus D (2001), Mineral identification using artificial neural networks and the rotating polarizer stage. Comput Geosci, Pergamon PressGoogle Scholar
  18. 18.
    Gray HF, Maxwell RJ, Martinez-Perez I, Arus C, Cerdan S (1996), Genetic programming for classification of brain tumours from nuclear magnetic resonance biopsy spectra. In: Koza J R, Goldberg D E, Fogel D B, Riolo R L (eds), Proc. of the First Annual Conference, Stanford University, MIT PressGoogle Scholar
  19. 19.
    Bentley PJ (2000), “Evolutionary, my dear Watson” — investigating committee-based evolution of fuzzy rules for the detection of suspicious insurance claims. Proc. Genetic and Evolutionary Computation Conf. (GECCO-2000), Morgan KaufmannGoogle Scholar
  20. 20.
    Kippenhahn R (1994), Discovering the Secrets of the Sun. John Wiley & SonsGoogle Scholar
  21. 21.
    Bhattacharyya S, Pictet O V, Zumbach G (2002), Knowledge-Intensive Genetic Discovery in Foreign Exchange Markets. IEEE Transactions on Evolutionary ComputationGoogle Scholar
  22. 22.
    Doherty CG (2003), Fundamental Analysis Using Genetic Programming for Classification Rule Induction. Genetic Algorithms and Genetic Programming at Stanford 2003, Stanford BookstoreGoogle Scholar
  23. 23.
    Whigham PA, Recknagel F (2001), An Inductive Approach to Ecological Time Series Modelling by Evolutionary Computation. Ecological ModellingGoogle Scholar
  24. 24.
    Szpunar E (2001), Data mining methods in prediction of changes in solar activity (in polish). MA Thesis, Wroclaw University of TechnologyGoogle Scholar
  25. 25.
    Myszkowski PB (2002), Data mining methods in stock market analysis (in polish). MA Thesis, Wroclaw University of TechnologyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Halina Kwasnicka
    • 1
  • Ewa Szpunar-Huk
    • 1
  1. 1.Institute of Applied InformaticsWroclaw University of TechnologyWroclawPoland

Personalised recommendations