We evaluate the convergence speed of an Interactive Evolutionary Computation (IEC) using a rating-scale mapping for user fatigue reduction. First, we introduce the concept of mapping users’ relative ratings to an “absolute scale”; this allows us to improve the performance of the IEC subjective evaluation characteristic predictor, which can in turn accelerate EC convergence and reduce user fatigue. Second, we experimentally evaluate the effectiveness of the proposed method using seven benchmark functions instead of a hunman user. The experimental results show that the convergence speed of an IEC using the proposed absolute rating data-trained predictor is much faster than an IEC using a conventional predictor trained using relative rating data.
Keywords
- Artificial Intelligence
- Rating Data
- Subjective Evaluation
- Relative Rating
- Evolutionary Computation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.