Evolutionary Method in Grouping of Units

  • Henryk Potrzebowski
  • Jarosław Stańczak
  • Krzysztof Sęp
Part of the Advances in Soft Computing book series (AINSC, volume 30)


This paper deals with the clustering problem, where an order of elements plays a pivotal role. This formulation is very usable for wide range of Decision Support System (DSS) applications. The proposed clustering method consists of two stages. The first is a stage of data matrix reorganization, using a specialized evolutionary algorithm. The second stage is a final clustering step and is performed using a simple clustering method.


Fitness Function Data Array Genetic Operator Cluster Problem Design Structure Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altus S S, Kroo I M, Gage P J (1996) “A Genetic Algorithm for Scheduling and Decomposition of Multidisciplinary Design Problems”, Journal of Mechanical Design, Vol. 118, No. 4, 486–489Google Scholar
  2. 2.
    Browning T R (2001) “Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions”, IEEE Transactions on Engineering Management, Vol. 48, No 3Google Scholar
  3. 3.
    Lenkstra J K (1977) “Sequencing by Enumerative Methods”, Matematisch Centrum, AmsterdamGoogle Scholar
  4. 4.
    McCormick W T, Schweitzer P J, White T W “Problem decomposition and data reorganization by a clustering technique”, Operations Res. 20, 1972, 993–1009zbMATHCrossRefGoogle Scholar
  5. 5.
    McCulley C, Bloebaum C (1996) A Genetic Tool for Optimal Design Sequencing in Complex Engineering Systems, Structural Optimization, Vol. 12, No. 2–3, 186–201CrossRefGoogle Scholar
  6. 6.
    Mulawka J, Stańczak J (1999) “Genetic Algorithms with Adaptive Probabilities of Operators Selection”, Proceedings of ICCIMA’99, New Delhi, India, pp. 464–468.Google Scholar
  7. 7.
    Potrzebowski H, Stańczak J, Sęp K (2004) “Evolutionary method in grouping of units with argument reduction”, ICSS, WrocławGoogle Scholar
  8. 8.
    Rogers J L (1997) “Reducing Design Cycle Time and Cost Thorough Process Resequencing”, International Conference on Engineering Design ICED 997, Tampere, FinlandGoogle Scholar
  9. 9.
    Stańczak J (1999) “Rozwój koncepcji i algorytmów dla samodoskonalących się systemów ewolucyjnych”, Ph.D. Dissertation, Politechnika WarszawskaGoogle Scholar
  10. 10.
    Sysło M M, Deo N, Kowalik J S (1983) “Algorithms of discrete optimization”, Prentice-HallGoogle Scholar
  11. 11.
    Yu T L, Goldberg D E, Yassine A, Yassine C (2003) “A Genetic Algorithm Design Inspired by Organizational Theory”, Genetic and Evolutionary Computation Conference (GECCO) 2003, Chicago, Illinois, USA, Publ. Springer-Verlag, Heidelberg, Lecture Notes in Computer Science, Vol 2724/2003, 1620–1621.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Henryk Potrzebowski
    • 1
  • Jarosław Stańczak
    • 1
  • Krzysztof Sęp
    • 1
  1. 1.Systems Research InstitutePolish Academy of ScienceWarsawPoland

Personalised recommendations