The turbulence models implemented into the FLOWer code are briefly characterized, considering their basic equations and emphasizing their differences with respect to their aimed at field of application. The influence of the models on the flow solution is demonstrated for two simple test cases, the flow around the RAE 2822 airfoil, representing transonic conditions, and the flow around the Aérospatiale A airfoil, representing high-lift conditions. Results for industrially more relevant test cases of the flow around two different wing-body configurations and a three-element airfoil are presented, confirming the findings for the simple geometries at least under transonic conditions. From this, recommendations for the choice of suitable models are derived.


Large Eddy Simulation Reynolds Stress Eddy Viscosity Eddy Viscosity Model Shock Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baldwin, B. S., Lomax, H., “Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flows”, AIAA Paper 78-0257, 1978Google Scholar
  2. 2.
    Chaput, E., “Aérospatiale-A Airfoil”, In: Haase, W., Chaput, E., Elsholz, E., Leschziner, M. A., Müller, U. R., “ECARP — European Computational Aerodynamics Research Project: Validation of CFD Codes and Assessment of Turbulence Models”, Notes on Numerical Fluid Mechanics, Vol. 58, Vieweg, 1997Google Scholar
  3. 3.
    Cook, P. H., McDonald, M. A., Firmin, M. C. P., “Aerofoil RAE 2822 — Pressure Distributions, and Boundary Layer and Wake Measurements”, In: J. Barche (Ed.), “Experimental Data Base for Computer Program Assessment”, AGARDAR-138, 1979Google Scholar
  4. 4.
    Davidson, L., Cokljat, D., Fröhlich, J., Leschziner, M. A., Mellen, C., Rodi, W., (Eds.), “LESFOIL: Large Eddy Simulation of Flow Around a High Lift Airfoil”, Springer, to appear 2003Google Scholar
  5. 5.
    Degani, D., Schiff, L. B., “Computation of Turbulent Supersonic Flows around Pointed Bodies Having Crossflow Separation”, Journal of Computational Physics, 66 (1986) 173–196zbMATHCrossRefGoogle Scholar
  6. 6.
    Edwards, J. R., Chandra, S., “Comparison of Eddy Viscosity-Transport Turbulence Models for Three-Dimensional, Shock-Separated Flowfields”, AIAA Journal 34 (1996) 756–763Google Scholar
  7. 7.
    Gatski, T. B., Rumsey, C. L., “Linear and Nonlinear Eddy Viscosity Models”, In: Launder, B., Sandham, N., “Closure Strategies for Turbulent and Transitional Flows”, Cambridge University Press, 2002Google Scholar
  8. 8.
    Kok, J. C., “Resolving the Dependence on Freestream Values for the k-ω Turbulence Model”, AIAA Journal 38 (2000) 1292–1295Google Scholar
  9. 9.
    Krumbein, A., DLR, personal communicationGoogle Scholar
  10. 10.
    Laurence, D., “Large Eddy Simulation for Industrial Flows?”, In: Launder, B., Sandham, N. (Eds.), “Closure Strategies for Turbulent and Transitional Flows”, Cambrigde University Press, 2002Google Scholar
  11. 11.
    Leschziner, M. A., Lien, F.-S., “Numerical Aspects of Applying Second-Moment Closure to Complex Flows”, In: Launder, B., Sandham, N. (Eds.), “Closure Strategies for Turbulent and Transitional Flows”, Cambridge University Press, 2002Google Scholar
  12. 12.
    Menter, F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications”, AIAA Journal 32 (1994) 1598–1605CrossRefGoogle Scholar
  13. 13.
    Prandtl, L. “Bericht über Untersuchungen zur ausgebildeten Turbulenz”, Zeitschrift für angewandte Mathematik und Mechanik 5 (1925) 136–139zbMATHGoogle Scholar
  14. 14.
    Rakowitz, M., Sutcliffe, M., Eisfeld, B., Schwamborn, D., Bleecke, H., Fassbender, J., “Structured and Unstructured Computations of the DLR-F4 Wing-Body Configuration”, AIAA Paper 2002-0837, Reno, 2002Google Scholar
  15. 15.
    Rudnik, R., Heinrich, R., Eisfeld, B. Schwarz, Th., “DLR Contributions to Code Validation Activities within the European High Lift Project EUROLIFT”, STAB Symposium, München, 2002Google Scholar
  16. 16.
    Rung, T., Bombardier Transportation, personal communication, 2003Google Scholar
  17. 17.
    Rung, T., Lübcke, H., Franke, M., Xue, L., Thiele, F., Fu, S., “Assessment of Explicit Algebraic Stress Models in Transonic Flows”, In: Proceedings of the 4th International Symposium on Engineering Turbulence Modelling and Measurements, Corsica, 1999, pp. 659–668Google Scholar
  18. 18.
    “Computational modelling of complex boundary-layer flows”, In: Proceedings of the 9th International Symposium on Transport Phenomena in Thermal-Fluids Engineering, Singapore, 1996, pp. 321–326Google Scholar
  19. 19.
    Spalart, P. R., Allmaras, S. R., “A one-equation turbulence model for aerodynamic flows”, La Recherche Aèrospatiale 1 (1994) 5–21Google Scholar
  20. 20.
    Wallin, S., Johansson, A. V., “An explicit algebraic Reynolds stress nodel for incompressible and compressible turbulent flows”, Journal of Fluid Mechanics 403 (2000) 89–132zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Wilcox, D. C., “Reassessment of the Scale-Determining Equation for Advances Turbulence Models”, AIAA Journal 26 (1988) 1299–1310zbMATHMathSciNetGoogle Scholar
  22. 22.
    Wilcox, D. C., “Turbulence Modeling for CFD”, 2nd edition, DCW Industries, 1998Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • B. Eisfeld
    • 1
  1. 1.DLRInstitute of Aerodynamics and Flow TechnologyBraunschweig

Personalised recommendations