Skip to main content

Simulation of problems with free surfaces by a boundary element method

  • Conference paper
Computational Science and High Performance Computing

Summary

The paper presents some problems on hydrodynamics of an ideal incompressible fluid with a free surface. All presented results of the problem solutions are achieved by the boundary element methods. The main trends of numerical research are described, the most interesting, from the authors point of view, numerical results of the solutions of some concrete problems are provided, a brief review of some works by other authors is presented. The new classes of problems on hydrodynamics with free boundaries and the realization of the algorithms, i.e. highly productive parallel calculations, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afanasiev KE, Goudov AM (2001) Information technologies in numerical calculations. Kemerovo State University, Kemerovo (in Russian)

    Google Scholar 

  2. Afanasiev KE, Samoilova TI (1995) Comput Techn 7(11):19–37 (in Russian)

    Google Scholar 

  3. Afanasiev KE, Stukolov SV (2001) CBEM for solution of plane problems on hydrodynamics and its realization on parallel computors. Kemerovo State University, Kemerovo (in Russian)

    Google Scholar 

  4. Afanasiev KE, Stukolov SV (2002) Solution of non-linear problems in the hydrodynamics of an ideal fluid with free boundaries by the method of boundary elements. In: International Conference on High Speed Hydrodynamics, Cheboksary

    Google Scholar 

  5. Kiselev OM, Kotlyar LM (1978) Non-linear problems in the theory of jet streams of heavy fluid. Kazan State University, Kazan (in Russian)

    Google Scholar 

  6. Moiseev NN (1957) J Prikl Mat Mekh 21(6):860–864 (in Russian)

    MathSciNet  Google Scholar 

  7. Guzevski LG (1982) Flow over obstructions by heavy fluid with a finite depth. In: Dynamics of continuous media with separating boundaries. Chuvash State University Press, Cheboksary (in Russian)

    Google Scholar 

  8. Lavrentiev MA (1975) Prikl Mekh Tekh Fiz 5:3–46 (in Russian)

    Google Scholar 

  9. Plotnikov PI (1991) ?Izv Akad Nauk SSSR, Ser Mat 55(2):339–366 (in Russian)

    MATH  Google Scholar 

  10. Bona JL, Chen M, Saut J-C (2002) J Nonlinear Sci 12:283–318

    Article  MATH  MathSciNet  Google Scholar 

  11. Belotserkovski SM, Kotovski VN, Nisht MI, Fedorov RM (1988) Mathematical modeling of plane parallel interrupted flow over bodies. Nauka, Moscow (in Russian)

    Google Scholar 

  12. Gorelov DN (1992) Izv Akad Nauk, Mekh Zhidk Gaza 4:173–177 (in Russian)

    MATH  Google Scholar 

  13. Gorelov DN (2002) J Appl Mech Tech Phys 1:37–42 (in Russian)

    Article  MathSciNet  Google Scholar 

  14. Terentiev AG, Kartuzova TV (1995) Numerical investigations of a system of airfoils by the boundary element method. In: Actual problems on mathematics and mechanics. Chuvash State University Press, Cheboksary (in Russian)

    Google Scholar 

  15. Yasko NN (1995) Izv Akad Nauk, Mekh Zhidk Gaza 4:100–107 (in Russian)

    MATH  Google Scholar 

  16. Mokry M (1990) AIAA J 127:1–11

    Google Scholar 

  17. Cebeci T, Besnard E, Chen HH (1998) Comput Fluids 27(5–6):651–661

    Article  MATH  Google Scholar 

  18. Hwang WS (1982) Comput Methods Appl Mech Eng 190:1679–1688

    Article  Google Scholar 

  19. Bal S, Kinnas SA (2002) Comput Mech 28:260–274

    Article  MATH  Google Scholar 

  20. Dragos L, Dinu A (1995) Comput Methods Appl Mech Eng. 121:163–176

    Article  MATH  MathSciNet  Google Scholar 

  21. Maklakov DV (1995) Izv Akad Nauk, Mekh Zhidk Gaza 2:108–117 (in Russian)

    MATH  MathSciNet  Google Scholar 

  22. Maklakov DV (1990) Existence of solution of the problem of pre-critical flow over a vortex. In: Some applications of the functional analysis to problems of mathematical physics. Institute of Mathematics SB AS USSR, Novosibirsk (in Russian)

    Google Scholar 

  23. Gorlov SI (1999) Prikl Mekh Tekh Fiz 40(6):25–34 (in Russian)

    MathSciNet  Google Scholar 

  24. Zhitnikov VP, Sherykhalina NM, Sherykhalin OI (2000) Prikl Mekh Tekh Fiz 41(1):120–129 (in Russian)

    Google Scholar 

  25. Afanasiev KE (1997) Solution of non-linear problems on hydrodynamics of the ideal fluid with free boundaries by the methods of finite and boundary elements. Thesis for the degree of Doctor in Physics and Mathematics. Kemerovo (in Russian)

    Google Scholar 

  26. Afanasiev KE, Stukolov SV (1999) Comput Techn 4(3):3–16 (in Russian)

    Google Scholar 

  27. Stukolov SV (1999) Numerical modeling of solitary steady waves on the surface of a fluid with finite depth. In: Mathematical problems on mechanics of continuous media. Institute of Hydrodynamics SB RAS, Novosibirsk (in Russian)

    Google Scholar 

  28. Sturova IV (1990) Numerical calculations in the problems of generation of plane surface waves. Preprint 12. Computing Center SB AS USSR, Krasnoyarsk (in Russian)

    Google Scholar 

  29. Afanasiev KE (1996) Approximation of a non-linear solitary wave. In: VI Scientific School High Speed Hydrodynamics. Chuvash State University, Cheboksary (in Russian)

    Google Scholar 

  30. Stukolov SV (1999) Solution of non-linear wave problems on hydrodynamics of the ideal fluid by the complex boundary element method. Thesis for the degree of Candidate in Physics and Mathematics. Kemerovo (in Russian)

    Google Scholar 

  31. Afanasiev KE, Stukolov SV (2000) Appl Mech Tech Phys 41(3):470–478

    Article  Google Scholar 

  32. Korotkov GG (2000) Numerical investigation of flow over obstructions by a vortical fluid with free boundaries. In: Works of N.I. Lobachevski Mathematical Center, Kazan 7:164–168 (in Russian)

    Google Scholar 

  33. Afanasiev KE, Stukolov SV (1996) Modeling of capsizing waves by the complex boundary element method. In: VI Scientific School High Speed Hydrodynamics. Chuvash State University, Cheboksary (in Russian)

    Google Scholar 

  34. Grosenbaugh M, Yeung R (1989) Fluid Mech 209:57–75

    Article  MATH  Google Scholar 

  35. Suzuki K (1989) Calculation of nonlinear water waves around d2-dimensional body in uniform flow by means of boundary element method. In: Fifth International Conference on Numerical Ship Hydrodynamics, Part 1

    Google Scholar 

  36. Afanasiev K.E. (1998) Comput Techn 3(1):3–11 (in Russian)

    Google Scholar 

  37. Peregrine D (1987) New Developments in Foreign Science. Moscow: Mir. 42:37–71

    Google Scholar 

  38. Bukreev VI, Turanov NP (1996) Appl Mech Tech Phys 37(6):44–50

    Google Scholar 

  39. Manoilin SV (1989) Some experimental theoretical methods for determination of influence of tsunami waves on hydrotechnical constructions and defined water areas in sea ports. Preprint 5. Computing Center SB AS USSR. Krasnoyarsk (in Russian)

    Google Scholar 

  40. Synolakis CE (1987) J Fluid Mech 185:523–545

    Article  MATH  Google Scholar 

  41. Frank AM (1989) Prikl Mekh Tekh Fiz 3:95–101 (in Russian)

    Google Scholar 

  42. Frank AM (1993) Prikl Mekh Tekh Fiz 5:15–24 (in Russian)

    MATH  Google Scholar 

  43. Protopopov BE, Sturova IV (1989) Prikl Mekh Tekh Fiz 1:125–133 (in Russian)

    MathSciNet  Google Scholar 

  44. Protopopov BE (1990) Izv Akad Nauk, Mekh Zhidk Gaza 5:115–123 (in Russian)

    MATH  Google Scholar 

  45. Ruziev RA, Khakimzyanov GS (1992) Comput Techn, Institute of Computational Technologies SB RAS. 1(1):5–21 (in Russian)

    Google Scholar 

  46. Seabra-Santos FJ, Renouard DP, Temperville AM (1987) Fluid Mech 176:117–134

    Article  Google Scholar 

  47. Shokin YI, Ruziev RA, Khakimzyanov GS (1990) Numerical modeling of plane potential streams of fluid with surface waves. Preprint 12. Computing Center SB AS USSR. Krasnoyarsk (in Russian)

    Google Scholar 

  48. Goda Y, Morinobu K (1998) Coastal Eng 40(4):307–326

    Article  Google Scholar 

  49. Landrini M, Tyvand PA (2001) J Eng Math 39:131–170

    Article  MATH  MathSciNet  Google Scholar 

  50. Yasuda T, Mutsuda H, Mizutani N, Matsuda H (1999) Coastal Eng 41(3&4):269–280

    Google Scholar 

  51. Kawasaki K (1999) Coastal Eng 41(3&4):201–223

    Google Scholar 

  52. Kim JW, Bai KJ, Ertekin RC, Webster WC (2002) A strongly-nonlinear model for water waves in water of variable depth-the irrotational Green-Naghdi model. In: 21 International Conference on Offshore Mechanics and Offshore Engineering. Oslo, Norway

    Google Scholar 

  53. Gotoh H, Sakai T (1999) Coastal Eng 41(3&4):303–326

    Google Scholar 

  54. Guler I, Behr M, Tezduyar T (1999) Comp Mech 23:117–123

    Article  Google Scholar 

  55. Tulin MP (2002) Future directions in the study of non-conservative water wave systems. In: 21 International Conference on Offshore Mechanics and Offshore Engineering. Oslo, Norway

    Google Scholar 

  56. Afanasiev KE, Stukolov SV (1998) Moving of a solitary wave onto an inclined shore. In: Bulletin of the Omsk University 3:9–12 (in Russian)

    Google Scholar 

  57. Afanasiev KE, Stukolov SV (1999) Appl Mech Tech Phys 40(1):27–35

    Google Scholar 

  58. Cooker MJ, Peregrine DH, Vidal C, Dold JW (1990) Fluid Mech 215:1–22

    Article  MATH  MathSciNet  Google Scholar 

  59. Sidyakin EV, Stukolov SV (2000) Calculation of loads of surf waves onto hydrotechnical constructions. Kemerovo State University Bulletin, Mathematics series 4:134–140 (in Russian)

    Google Scholar 

  60. Khakimzyanov GS, Shokin Yu I, Barakhnin VB, Shokina NYu (2001) Numerical modelling of fluid flows with surface waves. Publishing House of SB RAS, Novosibirsk (in Russian)

    Google Scholar 

  61. Park J-C, Kim M-H, Miyata H (2001) J Mar Sci Tech 6:70–82

    Article  Google Scholar 

  62. Afanasiev KE, Korotkov GG (2002) Evolution of a semi-circular cavity on the free surface in the plane and axis-symmetrical cases. In: International Conference on High Speed Hydrodynamics. Cheboksary

    Google Scholar 

  63. Korotkov GG, Stukolov SV (1998) Package of applied programs for wave problems on hydrodynamics. In: Scientific School-Conference on Mathematical Modelling: Geometry and Algebra. Kazan

    Google Scholar 

  64. Braess H, Wriggers P (2000) Comput Methods Appl Mech Eng 190:95–109

    Article  MATH  Google Scholar 

  65. Elmore PA, Chahine GL, Oguz HN (2001) Exp Fluids 31:664–673

    Article  Google Scholar 

  66. Ogus HN, Prosperetti A (1990) Fluid Mech 219:143–179

    Article  Google Scholar 

  67. Tuck EO (2000) Numerical solution for unsteady two-dimensional free-surface flows. In: 11th Biennual Compational Techniques and Applications Conference, World Scientific

    Google Scholar 

  68. Best JP, Blake JR (1994) Fluid Mech 261:75–93

    Article  MATH  MathSciNet  Google Scholar 

  69. Blake JR (1988) J Aust Math Soc Ser B30:127–146

    MathSciNet  Google Scholar 

  70. Plesset MS, Chapman RB (1972) Fluid Mech 47(II):283–290

    Google Scholar 

  71. Terentiev AG, Afanasiev KE (1987) Numerical methods in hydrodynamics. Educational manual. Cheboksary: Chuvash State University (in Russian)

    Google Scholar 

  72. Voinov OV (1979) Prikl Mekh Tekh Fiz 3:94–99 (in Russian)

    Google Scholar 

  73. Blake JR, Gibson DC (1981) Fluid Mech 111:123–140

    Article  Google Scholar 

  74. Chahine GL (1979) Trans ASME: Ser.I, J Fluids Engng 99:706–716

    Google Scholar 

  75. Cole R (1950) Underwater explosions. Inostrannaya Literatura, Moscow

    Google Scholar 

  76. Blake JR, Gibson DC (1987) Fluid Mech 19:99–123

    Article  Google Scholar 

  77. Cerone R, Blake JR (1984) J Austral Math Soc. Ser.B 26:31–44

    Article  MATH  MathSciNet  Google Scholar 

  78. Domermuth GD, Yue DKP (1987) Fluid Mech 178:195–219

    Article  Google Scholar 

  79. Kedrinskij VK (1978) Surface effects at an underwater explosion (review). J Appl Mech Tech Phys 5

    Google Scholar 

  80. Mitchell TM, Hammit FG (1973) Trans ASME J Basic Engng I95 29

    Google Scholar 

  81. Plesset MS, Prosperetti A (1977) Annu Rev Fluid Mech 9:145–185

    Article  MATH  Google Scholar 

  82. Voinov VV, Voinov OV (1975) Prikl Mekh Tekh Fiz 1:89–95 (in Russian)

    Google Scholar 

  83. Voinov VV, Voinov OV (1976) Papers of AS USSR 227:63–66 (in Russian)

    Google Scholar 

  84. Shima A, Nakajama K (1977) Fluid Mech 80(2):369–391

    Article  MATH  Google Scholar 

  85. Benjamin TB, Ellis AT (1966) Phil Trans R Soc Lon A 260:221–240

    Google Scholar 

  86. Blake JR, Robinson PB, Shima A, Tomita Y (1993) Fluid Mech 255:707–721

    Article  Google Scholar 

  87. Lauterborn W, Bolle H (1975) Fluid Mech 72:391–399

    Article  Google Scholar 

  88. Ligneul P (1987) Phys Fluids 30(7):2280–2283

    Article  Google Scholar 

  89. Shima A, Sato Y (1979) Ing-Arch 48(2):85–95

    Article  MATH  Google Scholar 

  90. Shima A, Takajama K, Tomita Y, Ohsawa N (1983) AIAA J 21:55–59

    Google Scholar 

  91. Shima A, Tomita Y, Gibson DC, Blake JR (1989) Fluid Mech 203:199–214

    Article  Google Scholar 

  92. Tomita Y, Sato K, Shima A (1994) Bubble Dyn Inter Phen:33–45

    Google Scholar 

  93. Best JP, Kucera A (1992) Fluid Mech 245:137–154

    Article  MATH  Google Scholar 

  94. Shopov PJ, Minev PD (1992) Fluid Mech 235:123–141

    Article  MATH  Google Scholar 

  95. Blake JR, Taib BB, Doherty G (1986) Fluid Mech 170:479–498

    Article  MATH  Google Scholar 

  96. Blake JR, Taib BB, Doherty G (1987) Fluid Mech 181:197–212

    Article  Google Scholar 

  97. Terentiev AG, Afanasiev KE, Afanasieva MM (1989) Simulation of unsteady free surface flow problems by the direct boundary method. In: Advanced boundary element methods IUTAM Symposium, Springer-Verlag

    Google Scholar 

  98. Levkovski YL (1978) Structure of cavitation streams. Sudostroenie, Leningrad (in Russian)

    Google Scholar 

  99. Prosperetti A (1977) Meccanica 12(4):214–235

    Article  MATH  Google Scholar 

  100. Goudov AM (1995) Numerical modeling of interaction of a bubble with different types of boundaries in a fluid. Thesis for the degree of Candidate in Physics and Mathematics. Kemerovo (in Russian)

    Google Scholar 

  101. Goudov AM (1997) Computat Techn 2(4):49–59 (in Russian)

    Google Scholar 

  102. Afanasiev KE, Afanasieva MM, Terentiev AG (1989) Deformation of gas bubbles in fluid. In: Actual problems on hydrodynamics. Chuvash State University, Cheboksary (in Russian)

    Google Scholar 

  103. Afanasiev KE, Goudov AM (1996) Evolution of a chain of three bubbles in the infinite fluid. In: Dynamics of continuous media with free boundaries. Cheboksary: Chuvash State University (in Russian)

    Google Scholar 

  104. Kedrinskij VK (2000) Hydrodynamics of explosion. Experiment and models. SB RAS, Novosibirsk (in Russian)

    Google Scholar 

  105. Wu C, Hwang Ned HC, Lin YK (2001) Cardiovascular Eng: Int J 1(4):171–176

    Article  Google Scholar 

  106. Chahine G, Duraiswami R, Rebut M (1992) Analytical and numerical study of large bubble / bubble and bubble / flow interactions. In: Bubble dynamics and interface phenomena, Kluwer Academic Publihers

    Google Scholar 

  107. Chahine GL (1994) Strong interactions bubble/bubble and bubble/flow. In: Bubble dynamics and interface phenomena, Kluwer Academic Publihers

    Google Scholar 

  108. Wang QX (1998) Theoret Comput Fluid Dynamics 12:29–51

    Article  MATH  Google Scholar 

  109. Xi W-Q, Kwee P-E, Hock T-B (1998) Numerical Simulation of Evolution of Three-Dimensional Bubble. In: 22nd Symposium on Naval Hydrodynamics. Washington, D.C. Preprints

    Google Scholar 

  110. Lavrentiev MA, Shabat BV (1977) Problems of hydrodynamics and their mathematical models. Science, Moscow (in Russian)

    Google Scholar 

  111. Afanasiev KE, Grigorieva IV (2000) Investigation of the evolution of a spatial cavitation bubble near a solid wall in the ideal incompressible fluid in presence of surface tension. In: Works of N.I. Lobachevski Mathematical Center, Kazan 7:38–42 (in Russian)

    Google Scholar 

  112. Afanasiev KE, Grigorieva IV (2001) Interaction of a spatial gas-steam bubble with solid walls in the ideal incompressible fluid in presence of surface tension. In: Scientific Practical Conference “Informational Resources of Kuzbass”, Kemerovo

    Google Scholar 

  113. Afanasiev KE, Grigorieva IV (2002) The Investigation of buoyant gas bubble dynamics near an inclined wall. In: International Conference on High Speed Hydrodynamics. Cheboksary (in Russian)

    Google Scholar 

  114. Grigorieva IV (2000) Investigation of the evolution of a spatial gas bubble in the ideal incompressible fluid. In: Kemerovo State Univercity Bulletin, Mathematics series. Kemerovo 4:123–128

    Google Scholar 

  115. Grigorieva IV (2000) Peculiarities of numerical solution of spatial problems on dynamics of the ideal incompressible fluid by the boundary element method. In: International Scientific Conference “Modeling, Calculations, Designing in Conditions of Vagueness — 2000”. Ufa

    Google Scholar 

  116. Knapp R, Daily G, Hammitt F (1974) Cavitation. Mir, Moscow

    Google Scholar 

  117. Lamb G (1947) Hydrodynamics. Gostechizdat, Moscow

    Google Scholar 

  118. Pritchett GW (1974) Calculations of phenomena during underwater explosions in conditions of incompressibility. In: Underwater and underground explosions. Moscow: Mir

    Google Scholar 

  119. Chubarov LB (2000) Numerical modeling of tsunami waves. Thesis for the scientific degree of Doctor in Physics and Mathematics. Novosibirsk (in Russian)

    Google Scholar 

  120. Afanasiev KE, Dolaev RR (2002) Program complex “AKORD” for support of calculating experiments. In: International Conference on High Speed Hydrodynamics. Cheboksary

    Google Scholar 

  121. Afanasiev KE, Goudov AM, Grigorieva IV, Korotkov GG, Dolaev RR, Berezin EN (2000) Integrated system for support of numerical experiments “AKORD”. In: Kemerovo State Univercity Bulletin, Mathematics series. Kemerovo 4:82–91 (in Russian)

    Google Scholar 

  122. Afanasiev KE, Korotkov GG, Dolaev RR (2000) Comput Techn 5(1):5–18

    Google Scholar 

  123. Afanasiev KE, Goudov AM, Korotkov GG, Dolaev RR, Berezin EN (2000) Shared package of application programs “AKORD” for support of calculating experiments. In: International Scientific Conference “Modeling, Calculations, Designing in Conditions of Vagueness — 2000”. Ufa (in Russian)

    Google Scholar 

  124. Grigorieva IV, Goudov AM (1999) Comput Techn 4(6):68–76 (in Russian)

    Google Scholar 

  125. Voevodin VV, Voevodin VIV (2002) Parallel calculations. BHV-Petersburg, St-Petersburg (in Russian)

    Google Scholar 

  126. Afanasiev KE, Stukolov SV (2003) Electronic educational methodical complex “Multiprocessor computing systems and parallel programming”. In: Scientific Methodical Conference “Telematics-2003”. St-Petersburg

    Google Scholar 

  127. Afanasiev KE, Stukolov SV, Demidov AV, Malyshenko VV (2003) Multiprocessor computing systems and parallel programming. Kemerovo State University. Kuzbassvuzizdat, Kemerovo (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Afanasiev, K.E., Stukolov, S.V. (2005). Simulation of problems with free surfaces by a boundary element method. In: Krause, E., Shokin, Y.I., Resch, M., Shokina, N. (eds) Computational Science and High Performance Computing. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32376-7_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-32376-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24120-1

  • Online ISBN: 978-3-540-32376-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics