Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
Bibliography
Abian, S. and A. B. Brown. 1962. A theorem on partially order sets with applications to fixed point theorems. Canadian Journal of Mathematics, 13, 78–82.
Aiyagari, R. 1994. Uninsured idiosyncratic risk and aggregate saving. Quarterly Journal of Economics, 109, 659–684.
Amann, H. 1976. Fixed equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Review, 18, 620–709.
Amann, H. 1977. Order Structures and Fixed Points. SAFA 2, ATTI del 2. Seminario di Analisi Funzionale e Applicazioni. MS.
Amir, R. 1996. Sensitivity analysis of multisector optimal economic dynamics, Journal of Mathematical Economics, 25, 123–141.
Amir, R., L. Mirman and W. Perkins. 1991, One-sector nonclassical optimal growth: optimality conditions and comparative dynamics. International Economic Review, 32, 625–644.
Antoniadou, E. 1995. Lattice Programming and Economic Optimization. Ph.D. Dissertation. Stanford University.
Askri, K. and C. Le Van. 1998. Differentiability of the value function of nonclassical optimal growth models. Journal of Optimization Theory and Applications. 97, 591–604.
Becker, R. and C. Foias. 1998. Implicit programming and the invariant manifold for Ramsey equilibria. in Y. Abramovich, E. Avgerinos, and N. Yannelis, eds. Functional Analysis and Economic Theory, 1998, Springer-Verlag.
Becker R, and I. Zilcha. 1997. Stationary Ramsey equilibria under uncertainty. Journal of Economic Theory, 75, 122–140.
Berge, C. 1963. Topological Spaces, MacMillan Press.
Bewley, T. 1986. Stationary monetary equilibrium with a continuum of independently fluctuating consumers. in Contributions to Mathematics in Honor of Gerard Debreu, ed. W. Hildenbrand and A. Mas-Colell. North-Holland, Amsterdam.
Birkhoff, G. 1967. Lattice Theory. AMS Press.
Bizer, D. and K. Judd. 1989. Taxation and uncertainty. American Economic Review, 79, 331–336.
Bourbaki, N. 1950, Sur le Théorème de Zorn, Archiv der Mathematik, 2 (1949–1950), 434–437.
Brock, W. and L. Mirman. 1972. Optimal growth and uncertainty: the discounted case. Journal of Economic Theory, 4, 479–513.
Clarke, F. 1983. Optimization and Nonsmooth Analysis. SIAM Press.
Coleman, W. J. II. 1990. Solving the stochastic growth model by policyfunction iteration. Journal of Business and Economic Statistics, 8, 27–29.
Coleman, W. J., II. 1991. Equilibrium in a production economy with an income tax. Econometrica, 59, 1091–1104.
Coleman, W. J., II. 1997. Equilibria in distorted infinite-horizon economies with capital and labor, Journal of Economic Theory, 72, 446–461.
Coleman, W. J., II. 2000. Uniqueness of an equilibrium in infinite-horizon economies subject to taxes and externalities, Journal of Economic Theory 95, 71–78.
Datta, M., L. J. Mirman and K. L. Reffett. 2002. Existence and uniqueness of equilibrium in distorted dynamic economies with capital and labor Journal of Economic Theory, 103, 377–410.
Datta, M., L. J. Mirman, O. F. Morand and K. L. Reffett. 2005. Markovian equilibrium in infinite horizon economies with many agents, incomplete markets and public policy. Journal of Mathematical Economics, 41, 505–544.
Datta, M. and K. L. Reffett. 2005. Computing Markovian equilibrium in large economies I: Bewley models with no aggregate risk. MS, Arizona State University.
Davey, B. and H. Priestley. 2002. Introduction to Lattices and Order. Cambridge Press, 2nd edition.
Davis, A. 1955. A characterization of complete lattices. Pacific Journal of Mathematics, 5, 311–319.
Debreu, G. 1967. Integration of correspondences. Proceedings of the Fifth Berkeley Symposium on Mathematics, Statistics, and Probability, II, Part 1, eds. L. LeCam, J. Neyman, and E.L. Scott. University of California Press. 351–372.
Dieudonne, J. 1960. Foundations of Modern Analysis. Academic Press.
Dudley, R. M. 1989. Real Analysis and Probability, Wadsworth.
Dugundji, J and V. Granas. 1982. Fixed Point Theory, Polish Scientific Press.
Erikson, J., O. F. Morand and K. L. Reffett. 2004. Isotone Recursive Methods for Overlapping Generations Models. MS. Arizona State University.
Frink, O. 1942. Topology in lattices. Transactions of the American Mathematical Society, 51, 569–582.
Gauvin, J. and F. Dubeau. 1982. Differential properties of the marginal function in mathematical programming. Mathematical Programming Studies, 19, 101–119.
Greenwood, J. and G. Huffman. 1995. On the existence of nonoptimal equilibria in dynamic stochastic economies, Journal of Economic Theory, 65, 611–623.
Guo, D. and V. Lakshmikantham. 1988. Nonlinear Problems in Abstract Cones. Academic Press.
Halmos, P. 1950. Measure Theory, Van Nostrand Press.
Heikkilä, S. 2005. Fixed point results and their applications to Markov processes. MS. Department of Mathematical Sciences, University of Oulu, Finland.
Heikkilä, S. and S. Hu. 1993. On fixed points of multifunctions in ordered spaces. Applicable Analysis, 51, 115–127.
Heikkilä, S. and V. Lakshmikantham. 1994. Monotone iterative techniques for discontinuous nonlinear differential equations, Marcel Dekker.
Heikkilä, S. and K. Reffett. 2005. Fixed point theorems and their applications to the theory of Nash equilibria, Nonlinear Analysis, forthcoming.
Heikkilä, S. and H. Salonen. 1996. On the existence of extremal stationary distributions of Markov processes. Research report 66, Dept of Economics, Univ. of Turku, Finland.
Heikkilä, S. and H. Salonen. 1996. On approximations of stochastic processes in metric spaces. MS. Dept of Economics, Univ of Turku, Finland.
Hopenhayn, H. and E. Prescott. 1992. Stochastic monotonicity and stationary distributions for dynamic economies. Econometrica, 60, 1387–1406.
Jachymski, J. 2001. Order-theoretic aspects of metric fixed point theory. in Handbook of Metric Fixed Point Theory, ed. W.A. Kirk and B. Sims, Kluwer. 613–641.
Jachymski, J. 2003. Converses to fixed point theorems of Zermelo and Caristi. Nonlinear Analysis, 52, 1455–63.
Judd, K. 1992. Projection methods for solving aggregate growth models. Journal of Economic Theory, 58, 410–452.
Kantorovich, L. The method of successive approximation for functional equations. 1939. Acta Math. 71, 63–97.
Krasnosel’skii, M. A., G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitiskii and V. Ya. Stetsenko, 1972. Approximate solution of Operator Equations. Wolters-Noordhoff Press.
Krasnosel’skii, M.A. and P. Zabreiko. 1984. Geometrical Methods of Nonlinear Analysis. Springer-Verlag.
Krebs, T. 2004. Non-existence of recursive equilibria on compact state spaces when markets are incomplete. Journal of Economic Theory, 115, 134–150.
Krusell, P. and A. Smith. 1998. Income and wealth heterogeneity in the macroeconomy, Journal of Political Economy, 106, 867–896.
Le Van, C. and Y. Vailakis. 2004. Existence of equilibrium in a single sector model with elastic labor. CERMSEM, Universite Paris I Working Paper.
Li Calzi, M. and A. Veinott, Jr. 1991. Subextremal functions and lattice programming. MS. Stanford University.
Lovejoy, W. 1987. Ordered solutions for dynamic programs. Mathematics of Operations Research, 269–278.
Lucas, R. E., Jr. and N. Stokey. 1987. Money and interest in a cash-inadvance economy. Econometrica, 55, 1821–37.
Markowsky, G. 1976. Chain-complete posets and directed sets with applications. Algebra Univ, 6, 53–68.
Miao, J. 2003. Competitive equilibria in economies with a continuum of consumer and aggregate shocks. Journal of Economic Theory, forthcoming.
Milgrom, P. and C. Shannon. 1994. Monotone comparative statics. Econometrica, 62, 157–180.
Mirman, L. J., O. F. Morand and K. L. Reffett. 2004. A qualitative approach to Markovian equilibrium in infinite horizon economies with capital. MS. Arizona State University.
Mirman, L. J., K. L. Reffett and J. Stachurski. 2004. Computing Markovian equilibrium in large economies II: Bewley models with aggregate risk. MS. Arizona State University.
Mirman, L. and I. Zilcha. 1975. On optimal growth under uncertainty. Journal of Economic Theory, 11, 329–339.
Morand, O. and K. Reffett. 2003. Existence and uniqueness of equilibrium in nonoptimal unbounded infinite horizon economies. Journal of Monetary Economics. 50, 1351–1373.
Morand, O. and K. Reffett. 2004. Monotone Map Methods for Overlapping Generations Models with nonclassical technologies: The Case of Markov Shocks. MS. Arizona State University.
Muenzenberger, T. and R. Smithson. 1973. Fixed point structures. American Mathematical Society, 184, 153–173.
Pelczar, A. 1961 On the invariant points of a transformation. Ann. Pol Math, 11, 199–202.
Prescott, E. and R. Mehra. 1980. Recursive competitive equilibrium: the case of homogeneous households. Econometrica, 48, 1365–1379
Reffett, K. L. 2004. Ordered Markovian equilibrium. MS, Arizona State University.
Reffett, K. L. 2004. Mixed monotone fixed point methods with economic applications. MS. Arizona State University.
Reffett, K. L. 2004. Mixed monotone recursivemethods. MS. Arizona State University.
Rockafellar, R. T. 1980. Generalized directional derivatives and subgradients of nonconvex functions. Canadian Journal of Mathematics, 32, 257–280.
Rockafellar, R. T. and R. Wets. Variational Analysis. Springer Verlag.
Santos, M. 2000. The numerical accuracy of numerical solutions using Euler residuals. Econometrica, 68, 1377–1400.
Santos, M. 2002. On non existence of Markov equilibria in competitivemarket economies. Journal of Economic Theory, 105, 73–98.
Santos, M. and J. Vigo-Aguiar. 1998. Analysis of a numerical dynamic programming algorithm applied to economic models. Econometrica, 66, 409–426.
Smithson, R. 1971. Fixed points of order preserving multifunctions. Proceedings of the American Mathematical Society, 28(1), 304–310.
Stokey, N., R. E. Lucas, Jr., with E. Prescott. 1989. Recursive methods in economic dynamics. Harvard Press
Tarski, A. 1949. A fixed point for lattices and its applications. Bull. of Amer. Math. Soc. 55, 1051–52.
Tarski, A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics, 5, 285–309.
Topkis, D. 1978. Minimizing a submodular function on a lattice. Operations Research, 26, 305–321.
Topkis, D. 1979. Equilibrium points in nonzero sum n-person submodular games. SIAM Journal of Control and Optimization, 17, 773–787.
Topkis, D. 1998. Supermodularity and Complementarity. Princeton University Press.
Veinott, A. 1989. Lattice Programming, Notes Johns Hopkins University. MS.
Veinott, A. 1992. Lattice programming: qualitative optimization and equilibria. MS. Stanford
Vulikh, B. 1967. Introduction to the Theory of Partially Ordered Spaces, Noordhoff Scientific Publishers.
Zhou, L. 1994. The set of Nash equilibria of a supermodular game is a complete lattice. Games and Economic Behavior, 7, 295–300.
Zeidler, E. 1986. Nonlinear Functional Analysis and its Applications, volume 1. Springer Verlag.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer Berlin · Heidelberg
About this chapter
Cite this chapter
Datta, M., Reffett, K.L. (2006). Isotone Recursive Methods: The Case of Homogeneous Agents. In: Dana, RA., Le Van, C., Mitra, T., Nishimura, K. (eds) Handbook on Optimal Growth 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32310-4_8
Download citation
DOI: https://doi.org/10.1007/3-540-32310-4_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32308-2
Online ISBN: 978-3-540-32310-5
eBook Packages: Business and EconomicsEconomics and Finance (R0)
