Skip to main content

Optimal Cycles and Chaos

  • Chapter

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. R. Amir (1996), “Sensitivity analysis of multisector optimal economic dynamics”, Journal of Mathematical Economics 25, 123–141.

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. J. Benhabib and R. Day (1982), “Rational choice and erratic behaviour”, Review of Economic Studies 48, 459–471.

    MathSciNet  Google Scholar 

  3. J. Benhabib and K. Nishimura (1985), “Competitive equilibrium cycles”, Journal of Economic Theory 35, 284–306.

    CrossRef  MathSciNet  Google Scholar 

  4. M. Boldrin and R.J. Deneckere (1990), “Sources of complex dynamics in two-sector growth models”, Journal of Economic Dynamics and Control 14, 627–653.

    CrossRef  MathSciNet  Google Scholar 

  5. M. Boldrin and L. Montrucchio (1986), “On the indeterminacy of capital accumulation paths”, Journal of Economic Theory 40, 26–39.

    CrossRef  MathSciNet  Google Scholar 

  6. W.A. Brock (1970), “On existence of weakly maximal programmes in a multi-sector economy”, Review of Economic Studies 37, 275–280.

    CrossRef  MATH  Google Scholar 

  7. G. Butler and G. Pianigiani (1978), “Periodic points and chaotic functions in the unit interval”, Bulletin of the Australian Mathematical Society 18, 255–265.

    CrossRef  MathSciNet  Google Scholar 

  8. D. Cass and K. Shell (1976), “The structure and stability of competitive dynamical systems”, Journal of Economic Theory 12, 31–70.

    CrossRef  MathSciNet  Google Scholar 

  9. R.H. Day (1982), “Irregular growth cycles”, American Economic Review 72, 406–414.

    Google Scholar 

  10. R.H. Day (1983), “The emergence of chaos from classical economic growth”, Quarterly Journal of Economics 98, 201–213.

    CrossRef  MathSciNet  Google Scholar 

  11. R. Deneckere and S. Pelikan (1986), “Competitive chaos”, Journal of Economic Theory 40, 13–25.

    CrossRef  MathSciNet  Google Scholar 

  12. D. Gale (1967), “On optimal development in a multi-sector economy”, Review of Economic Studies 34, 1–18.

    CrossRef  MathSciNet  Google Scholar 

  13. M.A. Khan and T. Mitra (2005), “On topological chaos in the Robinson-Solow-Srinivasan model”, Economics Letters 88, 127–133.

    CrossRef  MathSciNet  Google Scholar 

  14. M. Kurz (1968), “Optimal growth and wealth effects”, International Economic Review 9, 348–357.

    CrossRef  MATH  Google Scholar 

  15. A. Lasota and J.A. Yorke (1973), “On the existence of invariant measures for piecewise monotonic transformations”, Transactions of the American Mathematical Society 186, 481–488.

    CrossRef  MathSciNet  Google Scholar 

  16. T. Li and J. Yorke (1975), “Period three implies chaos”, American Mathematical Monthly 82, 985–992.

    CrossRef  MathSciNet  Google Scholar 

  17. T. Li and J. Yorke (1978), “Ergodic transformations from an interval into itself”, Transactions of the American Mathematical Society 235, 183–192.

    CrossRef  MathSciNet  Google Scholar 

  18. L.W. McKenzie (1968), “Accumulation programs of maximum utility and the von Neumann facet”, in J.N. Wolfe, Value, Capital and Growth, Edinburgh University Press, 353–383.

    Google Scholar 

  19. L.W. McKenzie (1983), “Turnpike theory, discounted utility and the von Neumann facet”, Journal of Economic Theory 30, 330–352.

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. L.W. McKenzie (1986), “Optimal economic growth, turnpike theorems and comparative dynamics”, in K. Arrow and M. Intriligator, Handbook of Mathematical Economics III, North-Holland, 1281–1355.

    Google Scholar 

  21. T. Mitra (2000), “Introduction to dynamic optimization theory”, in M. Majumdar, T. Mitra, and K. Nishimura, Optimization and Chaos, Springer-Verlag, 31–108.

    Google Scholar 

  22. T. Mitra and K. Nishimura (2001), “Discounting and long-run behavior: global bifurcation analysis of a family of dynamical systems”, Journal of Economic Theory 96, 256–293.

    CrossRef  MathSciNet  Google Scholar 

  23. K. Nishimura and M. Yano (1994), “Optimal chaos, nonlinearity and feasibility conditions”, Economic Theory 4, 689–704.

    CrossRef  MathSciNet  Google Scholar 

  24. K. Nishimura and M. Yano (1995a), “Durable capital and chaos in competitive business cycles”, Journal of Economic Behavior and Organization 27, 165–181.

    CrossRef  Google Scholar 

  25. K. Nishimura and M. Yano (1995b), “Nonlinear dynamics and chaos in optimal growth: an example”, Econometrica 63, 981–1001.

    CrossRef  MathSciNet  Google Scholar 

  26. K. Nishimura and M. Yano (1996), “Chaotic solutions in dynamic linear programming”, Chaos, Solitons & Fractals 7, 1941–1953.

    CrossRef  MathSciNet  Google Scholar 

  27. K. Nishimura, T. Shigoka, and M. Yano (1998), “Interior optimal chaos with arbitrarily low discount rates”, Japanese Economic Review 49, 223–233.

    CrossRef  Google Scholar 

  28. K. Nishimura, G. Sorger, and M. Yano (1994), “Ergodic chaos in optimal growth models with low discount rates”, Economic Theory 4, 705–717.

    CrossRef  MathSciNet  Google Scholar 

  29. F.P. Ramsey (1928), “A mathematical theory of saving”, Economic Journal 38, 543–559.

    CrossRef  Google Scholar 

  30. S.M. Ross (1983), Introduction to Stochastic Dynamic Programming, Academic Press.

    Google Scholar 

  31. P.A. Samuelson (1973), “Optimality of profit, including prices under ideal planning”, Proceedings of the National Academy of Sciences 70, 2109–2111.

    CrossRef  MATH  MathSciNet  ADS  Google Scholar 

  32. A. Sarkovskii (1964), “Coexistence of cycles of a continuous map of the line into itself”, Ukrainian Mathematical Journal 16, 61–71.

    MathSciNet  Google Scholar 

  33. J.A. Scheinkman (1976), “On optimal steady states of n-sector growth models when utility is discounted”, Journal of Economic Theory 12, 11–30.

    CrossRef  MATH  MathSciNet  Google Scholar 

  34. G. Sorger (1992), Minimum Impatience Theorems for Recursive Economic Models, Springer-Verlag.

    Google Scholar 

  35. N.L. Stokey and R.E. Lucas, Jr., (1989), Recursive Methods in Economic Dynamics, Harvard University Press.

    Google Scholar 

  36. W.R.S. Sutherland (1970), “On optimal development in a multi-sectoral economy: the discounted case”, Review of Economic Studies 37, 585–589.

    CrossRef  MATH  Google Scholar 

  37. D. Topkis (1978), “Minimizing a submodular function on a lattice”, Operations Research 26, 305–321.

    CrossRef  MATH  MathSciNet  Google Scholar 

  38. H. Uzawa (1964), “Optimal growth in a two-sector model of capital accumulation”, Review of Economic Studies 31, 1–24.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin · Heidelberg

About this chapter

Cite this chapter

Mitra, T., Nishimura, K., Sorger, G. (2006). Optimal Cycles and Chaos. In: Dana, RA., Le Van, C., Mitra, T., Nishimura, K. (eds) Handbook on Optimal Growth 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32310-4_6

Download citation

Publish with us

Policies and ethics