Skip to main content

On Stationary Optimal Stocks in Optimal Growth Theory: Existence and Uniqueness Results

  • Chapter

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. J. Benhabib and K. Nishimura, On the uniqueness of steady states in an economy with heterogeneous capital goods, International Economic Review 20 (1979), 59–82.

    MathSciNet  MATH  Google Scholar 

  2. W.A. Brock, On existence of weakly maximal programmes in a multi-sector economy, Review of Economic Studies, 37 (1970), 275–280.

    CrossRef  MATH  Google Scholar 

  3. W. A. Brock, Some results on the uniqueness of steady states in multisector models of optimum growth when future utilities are discounted, International Economic Review 14 (1973), 535–559.

    MATH  MathSciNet  Google Scholar 

  4. W.A. Brock and E. Burmeister, Regular Economies and Conditions for Uniqueness of Steady States in Optimal Multi-Sector Economic Models, International Economic Review 17 (1976), 105–120.

    MathSciNet  MATH  Google Scholar 

  5. D. Cass and K. Shell, The structure and stability of competitive dynamical systems, J. Econ. Theory 12 (1976), 31–70.

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. S. Dasgupta and T. Mitra, Infinite Horizon Competitive Program are Optimal, Journal of Economics 69 (1999), 217–238.

    MATH  Google Scholar 

  7. E. Dierker, Two Remarks on the Number of Equilibria of an Economy, Econometrica 40 (1972), 951–953.

    MATH  MathSciNet  Google Scholar 

  8. J. Flynn, The existence of optimal invariant stocks in a multi-sector economy, Rev. Econ. Stud. 47 (1980), 809–811.

    CrossRef  MATH  Google Scholar 

  9. D. Gale, The Theory of Linear Economic Models, McGraw Hill, New York, 1960.

    Google Scholar 

  10. D. Gale, On optimal development in a multi-sector economy, Review of Economic Studies, 34 (1967), 1–18.

    CrossRef  MathSciNet  Google Scholar 

  11. T. Hansen and T.C. Koopmans, On the definition and computation of a capital stock invariant under optimization, J. Econ. Theory 5 (1972),487–523.

    CrossRef  MathSciNet  Google Scholar 

  12. E. Heinz, An Elementary Analytic Theory of the Degree of Mapping in n-Dimensional Space, Journal of Mathematics and Mechanics, (1959), 231–247.

    Google Scholar 

  13. M.A. Khan and T. Mitra, On the Existence of a Stationary Optimal Stock for a Multi-Sector Economy: A Primal Approach, J. Econ. Theory 40 (1986), 319–328.

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. M.A. Khan and T. Mitra, On choice of technique in the Robinson-Solow-Srinivasan model, International J. Econ. Theory 1 (2005), 83–110.

    CrossRef  Google Scholar 

  15. M. Kurz, Optimal Economic Growth and Wealth Effects, International Economic Review 4 (1968), 348–357.

    Google Scholar 

  16. D. Liviatan and P. A. Samuelson, Notes on Turnpikes: Stable and Unstable, Journal of Economic Theory 1, (1969), 454–475.

    CrossRef  MathSciNet  Google Scholar 

  17. O.L. Mangasarian, Non-Linear Programming, McGraw-Hill, New York, 1969.

    Google Scholar 

  18. L.W. McKenzie, Accumulation programs of maximum utility and the von Neumann facet, in Value, Capital and Growth (J. N. Wolfe, ed.), Edinburgh: Edinburgh University Press, 1968.

    Google Scholar 

  19. L.W. McKenzie, A primal route to the turnpike and Lyapunov stability, J. Econ. Theory 27 (1982), 194–209.

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. L.W. McKenzie, Optimal Economic Growth and Turnpike Theorems, in Handbook of Mathematical Economics (K.J. Arrow and M. Intrilligator, Eds.), North-Holland, New York, 1986.

    Google Scholar 

  21. T. Mitra, On the Existence of a Stationary Optimal Stock for a Multi-Sector Economy with a Non-Convex Technology, in Equilibrium and Dynamics (ed. M. Majumdar), MacMillan, London, 1991.

    Google Scholar 

  22. T. Mitra, Duality Theory in Infinite Horizon Optimization Models, manuscript, Cornell University, 2005.

    Google Scholar 

  23. T. Mitra, and H. Y. Wan Jr., On the Faustmann solution to the forest management problem, Journal of Economic Theory, 40 (1986), 229–249.

    CrossRef  MathSciNet  MATH  Google Scholar 

  24. H. Nikaido, Convex Structures and Economic Theory, Academic Press, New York, 1968.

    Google Scholar 

  25. J. Ortega and W. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.

    Google Scholar 

  26. B. Peleg, A Weakly Maximal Golden-Rule Program for a Multi-Sector Economy, Int. Econ. Rev. 14 (1973), 574–579.

    MATH  MathSciNet  Google Scholar 

  27. B. Peleg and H.E. Ryder, Jr., The modified golden-ule of a multi-sector economy, J. Math. Econ. 1 (1974), 193–198.

    CrossRef  MathSciNet  MATH  Google Scholar 

  28. W.R.S. Sutherland, Optimal Development Programs when the Future Utility is Discounted, Ph.D. dissertation, Brown University, 1967.

    Google Scholar 

  29. W.R.S. Sutherland, On optimal development in a multi-sectoral economy: The discounted case, Rev. Econ. Stud. 37 (1970), 585–589.

    CrossRef  MATH  Google Scholar 

  30. M.L. Weitzman, Duality theory for infinite horizon convex models, Manage. Sci. 19 (1973), 783–789.

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin · Heidelberg

About this chapter

Cite this chapter

Mitra, T., Nishimura, K. (2006). On Stationary Optimal Stocks in Optimal Growth Theory: Existence and Uniqueness Results. In: Dana, RA., Le Van, C., Mitra, T., Nishimura, K. (eds) Handbook on Optimal Growth 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32310-4_5

Download citation

Publish with us

Policies and ethics