Skip to main content

Rationalizability in Optimal Growth Theory

  • Chapter

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Boldrin, M., and L. Montrucchio: “On the indeterminacy of capital accumulation paths,” Journal of Economic Theory 40 (1986), 26–39.

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Boldrin, M., and M. Woodford: “Equilibrium models displaying endogenous fluctuations and chaos: a survey,” Journal of Monetary Economics 25 (1990), 189–222.

    CrossRef  Google Scholar 

  3. Chang, F.R.: “The inverse optimal problem: a dynamic programming approach,” Econometrica 56 (1988), 147–172.

    MATH  MathSciNet  Google Scholar 

  4. Debreu, G.: “Excess demand functions,” Journal of Mathematical Economics 1 (1974), 15–23.

    CrossRef  MATH  Google Scholar 

  5. Hewage, T.U., and D.A. Neumann, “Functions not realizable as policy functions in an optimal growth model,” undated Discussion Paper, Bowling Green State University.

    Google Scholar 

  6. Koopmans, T.C.: “Stationary ordinal utility and impatience,” Econometrica 28 (1960), 287–309.

    MATH  MathSciNet  Google Scholar 

  7. Kurz, M.: “On the inverse optimal problem,” in Mathematical Systems Theory and Economics I (H.W. Kuhn and G.P. Szegö, eds.), Springer-Verlag, Berlin, 1969.

    Google Scholar 

  8. Li, T.-Y., and J.A. Yorke: “Period three implies chaos,” American Mathematical Monthly 82 (1975), 985–992.

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. Majumdar, M., and T. Mitra: “Periodic and chaotic programe of optimal intertemporal allocation in an aggregative model with wealth effects,” Economic Theory 4 (1994), 649–676.

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Mantel, R.: “On the characterization of aggregate excess demand,” Journal of Economic Theory 7 (1974), 348–353.

    CrossRef  MathSciNet  Google Scholar 

  11. McKenzie, L.W.: “Optimal economic growth, turnpike theorems and comparative dynamics,” in Handbook of Mathematical Economics: Volume III (K. Arrow and M. Intriligator, eds.), North-land, Amsterdam, 1986.

    Google Scholar 

  12. Mitra, T.: “An exact discount factor restriction for period-three cycles in dynamic optimization models,” Journal of Economic Theory 69 (1996),281–305.

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Mitra, T.: “On the relation between discounting and complicated behavior in dynamic optimization models,” Journal of Economic Behavior and Organization 33 (1998), 421–434.

    CrossRef  Google Scholar 

  14. Mitra, T., and G. Sorger: “Rationalizing policy functions by dynamic optimization,” Econometrica 67 (1999), 375–392.

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. Mitra, T., and G. Sorger: “On the existence of chaotic policy functions in dynamic optimization,” Japanese Economic Review 50 (1999), 470–484.

    CrossRef  Google Scholar 

  16. Montrucchio, L.: “Lipschitz continuous policy functions for strongly concave optimization problems,” Journal of Mathematical Economics 16(1987), 259–273.

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Montrucchio, L.: “Dynamical systems that solve continuous-time concave optimization problems: anything goes,” in Cycles and Chaos in Economic Equilibrium (J. Benhabib, ed.), Princeton University Press, Princeton, 1992.

    Google Scholar 

  18. Montrucchio, L.: “Dynamic complexity of optimal paths and discount factors for strongly concave problems,” Journal of Optimization Theory and Applications 80 (1994), 385–406.

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Montrucchio, L., and G. Sorger: “Topological entropy of policy functions in concave dynamic optimization problems,” Journal of Mathematical Economics 25 (1996), 181–194.

    CrossRef  MathSciNet  MATH  Google Scholar 

  20. Neumann, D., T. O’Brien, J. Hoag, and K. Kim: “Policy functions for capital accumulation paths,” Journal of Economic Theory 46 (1988), 205–214.

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. Nishimura, K., G. Sorger, and M. Yano: “Ergodic chaos in optimal growth models with low discount factors,” Economic Theory 4 (1994), 705–717.

    CrossRef  MathSciNet  MATH  Google Scholar 

  22. Nishimura, K., and M. Yano: “Nonlinear dynamics and chaos in optimal growth: an example,” Econometrica 63 (1995), 981–1001.

    MathSciNet  MATH  Google Scholar 

  23. Nishimura, K., and M. Yano: “On the least upper bound of discount factors that are compatible with optimal period-three cycles,” Journal of Economic Theory 69 (1996), 306–333.

    CrossRef  MathSciNet  MATH  Google Scholar 

  24. Sonnenschein, H.: “Do Walras’ identity and continuity characterize the class of community excess demand functions?” Journal of Economic Theory 6 (1973), 345–354.

    CrossRef  MathSciNet  Google Scholar 

  25. Sonnenschein, H.: “Market excess demand functions,” Econometrica 40(1974), 549–563.

    MathSciNet  Google Scholar 

  26. Sorger, G.: “On the optimality of given feedback controls,” Journal of Optimization Theory and Applications 65 (1990), 321–329.

    CrossRef  MATH  MathSciNet  Google Scholar 

  27. Sorger, G.: “On the minimum rate of impatience for complicated optimal growth paths,” Journal of Economic Theory 56 (1992), 160–179.

    CrossRef  MATH  MathSciNet  Google Scholar 

  28. Sorger, G.: Minimum Impatience Theorems for Recursive Economic Models, Springer-Verlag, Berlin (1992).

    Google Scholar 

  29. Sorger, G.: “Policy functions of strictly concave optimal growth models,” Ricerche Economiche 48 (1994), 195–212.

    CrossRef  MATH  Google Scholar 

  30. Sorger, G.: “Period three implies heavy discounting,” Mathematics of Operations Research 19 (1994), 1007–1022.

    CrossRef  MATH  MathSciNet  Google Scholar 

  31. Sorger, G.: “Consistent planning under quasi-geometric discounting,” Journal of Economic Theory 118 (2004), 118–129.

    CrossRef  MATH  MathSciNet  Google Scholar 

  32. Stokey, N.L., and R.E. Lucas, Jr.: Recursive Methods in Economic Dynamics, Harvard University Press, Cambridge, 1989.

    Google Scholar 

  33. Strotz, R.H.: “Myopia and inconsistency in dynamic utility maximization,” Review of Economic Studies 23 (1956), 165–180.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin · Heidelberg

About this chapter

Cite this chapter

Sorger, G. (2006). Rationalizability in Optimal Growth Theory. In: Dana, RA., Le Van, C., Mitra, T., Nishimura, K. (eds) Handbook on Optimal Growth 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32310-4_4

Download citation

Publish with us

Policies and ethics