Skip to main content

Duality Theory in Infinite Horizon Optimization Models

  • Chapter
  • 795 Accesses

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Brock, W.A., On Existence of Weakly Maximal Programmes in a Multi-Sector Economy, Review of Economic Studies 37 (1970), 275–280.

    CrossRef  MATH  Google Scholar 

  2. Brock, W.A. and M. Majumdar, On Characterizing Optimal Competitive Programs in Terms of Decentralizable Conditions, Journal of Economic Theory 45 (1988), 262–273.

    CrossRef  MathSciNet  Google Scholar 

  3. Dasgupta, S. and T. Mitra, Characterization of Intertemporal Optimality in Terms of Decentralizable Conditions: The Discounted Case, Journal of Economic Theory 45 (1988), 274–287.

    CrossRef  MathSciNet  Google Scholar 

  4. Dasgupta, S. and T. Mitra, On Price Characterization of Optimal Plans in a Multi-Sector Economy, in Essays in Economic Theory (eds. B. Dutta, S. Gangopadhyay, D. Mookherjee and D. Ray), Oxford University Press, 1990, 115–129.

    Google Scholar 

  5. Dasgupta, S. and T. Mitra, Optimal and Competitive Programs in Reachable Multi-Sector Models, Economic Theory 14 (1999a), 565–582.

    CrossRef  Google Scholar 

  6. Dasgupta, S. and T. Mitra, Infinite Horizon Competitive Programs are Optimal, Journal of Economics 69 (1999b), 217–238.

    Google Scholar 

  7. Flynn, J., The Existence of Optimal Invariant Stocks in a Multi-Sector Economy, Review of Economic Studies 47 (1980), 809–811.

    CrossRef  MATH  Google Scholar 

  8. Gale, D., The Theory of Linear Economic Models, New York: McGraw-Hill, 1960.

    Google Scholar 

  9. Gale, D., On Optimal Development in a Multi-Sector Economy, Review of Economic Studies 34 (1967), 1–18.

    CrossRef  MathSciNet  Google Scholar 

  10. Khan, M.A. and T. Mitra, On the Existence of a Stationary Optimal Stock for a Multi-Sector Economy: A Primal Approach, Journal of Economic Theory 40 (1986), 319–328.

    CrossRef  MathSciNet  Google Scholar 

  11. Kurz, M. and D. Starrett, On the Efficiency of Competitive Programmes in an Infinite Horizon Model, Review of Economic Studies 37 (1970), 571–584.

    CrossRef  Google Scholar 

  12. Majumdar, M. (ed.), Decentralization in Infinite Horizon Economies, Boulder: Westview Press, 1992.

    Google Scholar 

  13. Malinvaud, E., Capital Accumulation and Efficient Allocation of Resources, Econometrica 21 (1953), 233–268.

    MATH  MathSciNet  Google Scholar 

  14. McFadden, D., The Evaluation of Development Programmes, Review of Economic Studies 34 (1967), 25–50.

    CrossRef  Google Scholar 

  15. McKenzie, L.W., Accumulation Programs of Maximum Utility and the von Neumann Facet, in J.N. Wolfe (ed), Value, Capital and Growth. Edinburgh: Edinburgh University Press, 1968.

    Google Scholar 

  16. McKenzie, L.W., Turnpike Theorems with Technology and Welfare Function Variable, in J. Los and M.W. Los, eds., Mathematical Models in Economics, New York: American Elsevier, 1974.

    Google Scholar 

  17. McKenzie, L. W., A Primal Route to the Turnpike and Lyapounov Stability, Journal of Economic Theory 27 (1982), 194–209.

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. McKenzie, L. W., Optimal Economic Growth, Turnpike Theorems and Comparative Dynamics, in Handbook of Mathematical Economics, Vol. III, (K.J. Arrow and M. Intrilligator, eds.), North Holland, New York, 1986.

    Google Scholar 

  19. Nikaido, H., Convex Structures and Economic Theory, Academic Press, New York, 1968.

    Google Scholar 

  20. Mitra, T., Introduction to Dynamic Optimization Theory, in Optimization and Chaos (M. Majumdar, T. Mitra and K. Nishimura, eds.) Springer-Verlag, New York, 2000.

    Google Scholar 

  21. Mitra, T. and I. Zilcha, On Optimal Economic Growth with Changing Tastes and Technology: Characterization and Stability Results, International Economic Review 22 (1981), 221–238.

    MathSciNet  Google Scholar 

  22. Peleg, B., Efficiency Prices for Optimal Consumption Plans, III, J. Math. Anal. Appl. 32 (1970), 630–638.

    CrossRef  MATH  MathSciNet  Google Scholar 

  23. Peleg, B. (1973), A Weakly Maximal Golden-Rule Program for a Multi-Sector Economy, Int. Econ. Rev. 14 (1973), 574–579.

    MATH  MathSciNet  Google Scholar 

  24. Peleg, B. and H.E. Ryder, Jr., On Optimal Consumption Plans in a Multi-Sector Economy, Rev. Econ. Studies 39 (1972), 159–169.

    CrossRef  Google Scholar 

  25. Peleg, B. and H.E. Ryder, Jr., The Modified Golden-Rule of a Multi-Sector Economy, J. Math. Econ. 1 (1974), 193–198.

    CrossRef  MathSciNet  Google Scholar 

  26. Peleg, B. and I. Zilcha, On Competitive Prices for Optimal Consumption Plans II, SIAM Journal of Applied Mathematics, 32 (1977), 627–630.

    CrossRef  MathSciNet  Google Scholar 

  27. Ramsey, F. P., A Mathematical Theory of Saving, Economic Journal 38 (1928), 543–559.

    CrossRef  Google Scholar 

  28. Sutherland, W.R.S., On Optimal Development Programs when Future Utility is Discounted, Ph.D. Thesis, Brown University, 1967.

    Google Scholar 

  29. Sutherland, W.R.S., On Optimal Development in a Multi-Sectoral Economy: The Discounted Case, Rev. Econ. Studies 37, (1970) 585–589.

    CrossRef  MATH  Google Scholar 

  30. Weitzman, M.L., Duality Theory for Infinite Horizon Convex Models, Management Science 19 (1973), 783–789.

    CrossRef  MATH  MathSciNet  Google Scholar 

  31. Weitzman, M.L., On the Welfare Significance of National Product in a Dynamic Economy, Quarterly Journal of Economics, 90 (1976), 156–162.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin · Heidelberg

About this chapter

Cite this chapter

Mitra, T. (2006). Duality Theory in Infinite Horizon Optimization Models. In: Dana, RA., Le Van, C., Mitra, T., Nishimura, K. (eds) Handbook on Optimal Growth 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32310-4_3

Download citation

Publish with us

Policies and ethics