Skip to main content

Dynamic Games in Economics

  • Chapter

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Amir, R. (1996a), Continuous stochastic games of capital accumulation with convex transitions, Games and Economic Behavior, 16, 111–131.

    CrossRef  MathSciNet  Google Scholar 

  2. Amir, R. (1996b), Strategic intergenerational bequests with stochastic convex technology, Economic Theory, 8, 367–376.

    MATH  Google Scholar 

  3. Amir, R. (2002), Complementarity and Diagonal Dominance in Discounted Stochastic Games, Annals of Operations Research, 114, 39–56.

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Amir, R. and V. Lambson (2003), Entry, exit and imperfect competition in the long-run, Journal of Economic Theory, 110, 191–203.

    MathSciNet  Google Scholar 

  5. Amir, R., I. Evstigneev and J. Wooders (2003), Noncooperative R&D versus cooperative R&D with endogenous spillover rates, Games and Economic Behavior, 42, 183–207.

    CrossRef  Google Scholar 

  6. Athey, S. (2001), Single-crossing properties and existence of pure strategy equilibria in games of incomplete information, Econometrica, 69, 861–890.

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Athey, S. (2002), Monotone comparative statics under uncertainty, Quarterly Journal of Economics, 187–223.

    Google Scholar 

  8. Athey, S. and A. Schmutzler (2001), Investment and market dominance, RAND Journal of Economics, 32, 1–26.

    CrossRef  Google Scholar 

  9. Barro, R. and Gordon, D. (1983), A positive theory of monetary policy in a natural rate model, Journal of Political Economy, 91, 589–610.

    CrossRef  Google Scholar 

  10. Basar, T. and G. Olsder (1999), Dynamic Noncooperative Game Theory, SIAM Classics.

    Google Scholar 

  11. Basar, T. and P. Bernhardt (1995), H∞ Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach, 2nd ed. Birkhauser, Boston, MA.

    Google Scholar 

  12. Beggs, A. and P. Klemperer (1992), Multi-period competition with switching costs, Econometrica, 60, 651–666.

    Google Scholar 

  13. Bergin, J. and D. Bernhardt (1992), Anonymous sequential games with aggregate uncertainty, Journal of Mathematical Economics, 21, 543–562.

    CrossRef  MathSciNet  Google Scholar 

  14. Bergin, J. and D. Bernhardt (1995), Anonymous sequential games: Existence and characterization, Economic Theory, 5, 461–489.

    CrossRef  MathSciNet  Google Scholar 

  15. Bernheim, D. and D. Ray (1983), Altruistic growth economies I: Existence of bequest equilibria, IMSSS Report 419, Stanford Univ.

    Google Scholar 

  16. Bernheim, D. and D. Ray (1987), Economic growth with intergenerational altruism, Review of Economic Studies, 54, 227–242.

    CrossRef  MathSciNet  Google Scholar 

  17. Bertsekas, D. (1976), Dynamic Programming and Stochastic Control, Academic Press, New-York.

    Google Scholar 

  18. Blonski, M. (1999), When is rational behavior consistent with rules of thumb? A link between evolutionary terminology and neoclassical methodology, Journal of Mathematical Economics, 32, 131–144.

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Brander, J. and B. Spencer (1983), Strategic commitment with R&D: The symmetric case, Bell Journal of Economics, 14, 225–235.

    CrossRef  ADS  Google Scholar 

  20. Brock, W. and L. Mirman (1972), Optimal growth under uncertainty: The discounted case, Journal of Economic Theory, 4, 479–513.

    CrossRef  MathSciNet  Google Scholar 

  21. Cabral, L. and M. Riordan (1994), The learning curve, market dominance, and predatory pricing, Econometrica, 56, 1115–1140.

    Google Scholar 

  22. Cave, J. (1987), Long-term competition in a dynamic game: The cold fish war, Rand Journal of Economics, 18, 596–610.

    CrossRef  MathSciNet  Google Scholar 

  23. Chen, Y. and R. Rosenthal (1996), Dynamic duopoly with slowly changing consumer loyalties, International Journal of Industrial Organization, 14, 269–296.

    CrossRef  Google Scholar 

  24. Cohen, D. and P. Michel (1988), How should control theory be used to calculate a time-consistent government policy? Review of Economic Studies, 55, 263–274.

    CrossRef  Google Scholar 

  25. Crombs, D., D. Sevy and J. Ponssard (1987), Selection in dynamic entry games, Games and Economic Behavior, 21, 62–84.

    Google Scholar 

  26. Curtat, L. (1996), Markov equilibria of stochastic games with complementarities, Games and Economic Behavior, 17, 177–199.

    CrossRef  MATH  MathSciNet  Google Scholar 

  27. Cyert, R. andM. DeGroot (1970), Multiperiod decision models with alternating choice as the solution to the duopoly problem, Quarterly Journal of Economics, 84, 419–429.

    CrossRef  Google Scholar 

  28. Dana, R.-A. and L. Montrucchio (1993), Stationary Markovian strategies in dynamic games, in Becker, R. et-al., eds. General Equilibrium, Growth, and Trade. Vol 2. The Legacy of Lionel McKenzie. Economic Theory, Econometrics, and Mathematical Economics series, Academic Press, 331–51.

    Google Scholar 

  29. Dasgupta, P. and G. Heal (1979), Economic Theory and Exhaustible Resources, Cambridge University Press.

    Google Scholar 

  30. Datta, M. and L. Mirman (1999), Externalities, Market Power and Resource Extraction, Journal of Environmental Economics and Management, 37.

    Google Scholar 

  31. Datta, M., L. Mirman, O. Morand, K. Reffett (2002), Monotone methods for Markovian equilibrium in dynamic economies, Annals of Operations Research, Vol. 114.

    Google Scholar 

  32. Datta, M., L. Mirman, O. Morand and K. Reffett (2004), Lattice methods in computation of sequential Markov equilibrium in dynamic games, mimeo.

    Google Scholar 

  33. Dockner, E., S. Jorgensen, N. Van Long and G. Sorger (2000), Differential Games in Economics and Management Science, Cambridge University Press.

    Google Scholar 

  34. Doraszelski, U. and M. Satterthwaite (2003), Foundations of Markovperfect industry dynamics: Existence, purification and multiplicity, mimeo.

    Google Scholar 

  35. Doraszelski, U. and D. Besanko (2004), Capacity dynamics and endogenous asymmetries in firm size, RAND Journal of Economics, 35, 23–49.

    Google Scholar 

  36. Duffie, D., J. Geanakoplos, A. Mas-Collell and A. Mc Lennan (1988), Stationary Markov equilibria, Econometrica, 62, 745–781.

    Google Scholar 

  37. Dutta, P. and R. Sundaram (1991), How different can strategic models be?, Journal of Economic Theory; 60, 42–61.

    CrossRef  MathSciNet  Google Scholar 

  38. Dutta, P. and R. Sundaram (1992), Markovian equilibrium in a class of stochastic games: Existence theorems for discounted and undiscounted models, Economic Theory, 2, 197–214.

    CrossRef  MathSciNet  Google Scholar 

  39. Dutta, P. and R. Sundaram (1993), The tragedy of the commons? Economic Theory, 3, 413–26.

    CrossRef  MathSciNet  Google Scholar 

  40. Echenique, F. (2001a), Extensive-form games and strategic complementarities, Games and Economic Behavior 46, 348–364.

    CrossRef  MathSciNet  Google Scholar 

  41. Echenique, F. (2001b), A Characterization of Strategic Complementarities, Games and Economic Behavior 46, 325–347.

    CrossRef  MathSciNet  Google Scholar 

  42. Ericson, R. and A. Pakes (1995), Markov-perfect industry dynamics: A framework for empirical work, Review of Economic Studies, 62, 53–82.

    CrossRef  Google Scholar 

  43. Farrell, J. and C. Shapiro (1988), Dynamic competition with switching costs, RAND Journal of Economics, 19, 123–137.

    CrossRef  MathSciNet  Google Scholar 

  44. Fershtman, C. and M. Kamien (1987), Dynamic duopolistic competition with sticky prices, Econometrica, 55, 1151–1164.

    MathSciNet  Google Scholar 

  45. Fisher, R. and L. Mirman (1994), Strategic dynamic interaction, Journal of Economic Dynamics and Control, 16, 267–87.

    CrossRef  Google Scholar 

  46. Fisher, R. and L. Mirman (1996), The complete fish wars: Biological and dynamic interactions, Journal of Environmental Economics and Management, 30, 34–42.

    CrossRef  Google Scholar 

  47. Flaherty, M. T. (1980), Dynamic Limit Pricing, Barriers to Entry, and Rational Firms, Journal of Economic Theory, 23, 160–182.

    CrossRef  MATH  MathSciNet  Google Scholar 

  48. Flaherty, M. T. (1980), Industry Structure and Cost-Reducing Investment, Econometrica, 48, 1187–1209.

    MATH  MathSciNet  Google Scholar 

  49. Fudenberg, D. and J. Tirole (1983), Learning by doing and market performance, Bell Journal of Economics, 14, 522–530.

    CrossRef  Google Scholar 

  50. Fudenberg, D. and J. Tirole (1986), Dynamic Models of Oligopoly, Harwood Academic Publishers, Chur, Switzerland.

    Google Scholar 

  51. Fudenberg, D. and J. Tirole (1991), Game Theory, MIT Press. Cambridge.

    Google Scholar 

  52. Gowrisankaran, G. (1999), A dynamic model of endogenous horizontal mergers, Rand Journal of Economics, 30, 56–83.

    CrossRef  Google Scholar 

  53. Haller, H. and R. Lagunoff (2000), Genericity and Markovian behavior in stochastic games, Econometrica, 68: 1231–48.

    CrossRef  MathSciNet  Google Scholar 

  54. Harris, C. and J. Vickers (1985), Perfect equilibrium in a model of a race, Review of Economic Studies, 52, 193–209.

    CrossRef  MathSciNet  Google Scholar 

  55. Harris, C. and J. Vickers (1987), Racing with uncertainty, Review of Economic Studies, 54, 1–21.

    CrossRef  MathSciNet  Google Scholar 

  56. Harris, C. (1986), Existence and characterization of perfect equilibrium in games of perfect information, Econometrica, 53, 613–628.

    Google Scholar 

  57. Hellwig, M. and W. Leininger (1987), On the existence of subgame-perfect equilibrium in infinite-action games of perfect information, Journal of Economic Theory, 43, 55–75.

    CrossRef  MathSciNet  Google Scholar 

  58. Herings, J.-J. and R. Peeters (2004), Stationary equilibria in stochastic games: structure, selection, and computation, Journal of Economic Theory, 118, 32–60.

    CrossRef  MathSciNet  Google Scholar 

  59. Herr, A., R. Gardner and J. Walker (1997), An experimental study of time-independent and time-dependent externalities in the commons, Games and Economic Behavior, 19, 77–96.

    CrossRef  MathSciNet  Google Scholar 

  60. Heyman, D. and M. Sobel (1984), Stochastic Models in Operations Research, volume II: Stochastic Optimization, McGraw Hill, New-York.

    Google Scholar 

  61. Hopenhayn, H. (1992), Entry, exit, and firm dynamics in long run equilibrium, Econometrica; 60, 1127–50.

    MATH  MathSciNet  Google Scholar 

  62. Jensen, H. and B. Lockwood (1998), A note on discontinuous value functions and strategies in affine-quadratic differential games, Economics Letters, 61, 301–306.

    CrossRef  MathSciNet  Google Scholar 

  63. Jovanovic, B. (1982), Selection and the evolution of industry, Econometrica, 50, 649–670.

    MATH  MathSciNet  Google Scholar 

  64. Karatzas, I., M. Shubik and W. Sudderth (1994), Construction of stationary Markov equilibria in a strategic market game, Mathematics of Operations Research, 4, 975–1006.

    MathSciNet  Google Scholar 

  65. Karatzas, I., M. Shubik and W. Sudderth (1997), A strategic market game with secured lending, Journal of Mathematical Economics, 28, 207–47..

    CrossRef  MathSciNet  Google Scholar 

  66. Keser, C. (1993), Some results of experimental duopoly markets with demand inertia, Journal of Industrial Economics, XLI, 133–151.

    Google Scholar 

  67. Keser, C. and R. Gardner (1999), Strategic behavior of experienced subjects in a common pool resource game, International Journal of Game Theory, 28(2), 241–52.

    CrossRef  Google Scholar 

  68. Kirman, A. and M. Sobel (1974), Dynamic oligopoly with inventories, Econometrica, 42, 279–287.

    MathSciNet  Google Scholar 

  69. Kydland, F. and E. Prescott (1977), Rules rather than discretion: The inconsistency of optimal plans, Journal of Political Economy, 85, 473–91.

    CrossRef  Google Scholar 

  70. Lagunoff, R. and A. Matsui (1997), Asynchronous choice in repeated coordination games, Econometrica, 65, 1467–77.

    MathSciNet  Google Scholar 

  71. Lambson, V. E. (1992), “Competitive profits in the long run,” Review of Economic Studies, 59, 125–142.

    CrossRef  MATH  Google Scholar 

  72. Lane, J. and W. Leininger (1984), Differentiable Nash equilibria in altruistic economies, Journal of Economics, 44, 329–347.

    MathSciNet  Google Scholar 

  73. Lee, T. and L. Wilde (1980), Market structure and innovation: A reformulation, Quarterly Journal of Economics, 94, 429–436.

    CrossRef  Google Scholar 

  74. Leininger, W. (1986), Existence of perfect equilibrium in a model of growth with altruism between generations, Review of Economic Studies, 53, 349–67.

    CrossRef  MATH  MathSciNet  Google Scholar 

  75. Levhari, D. and L. Mirman (1980), The great fish war: An example using a dynamic Cournot-Nash solution, Bell Journal of Economics, 322–344.

    Google Scholar 

  76. Lewis, T. and R. Schmalensee (1980), On oligopolistic markets for nonrenewable natural resources, Quarterly Journal of Economics, 95, 475–491.

    CrossRef  Google Scholar 

  77. Lindsey, R. (1989), Import disruptions, exhaustible resources and intertemporal security of supply, Canadian Journal of Economics, 22, 340–363.

    CrossRef  Google Scholar 

  78. Loury, G. (1979), Market structure and innovation, Quarterly Journal of Economics, 93, 395–410.

    CrossRef  MATH  Google Scholar 

  79. Maskin, E. and J. Tirole (1988a), A theory of dynamic oligopoly I: Overview and quantity competition with large fixed costs, Econometrica, 56, 549–569.

    MathSciNet  Google Scholar 

  80. Maskin, E. and J. Tirole (1988b), A theory of dynamic oligopoly II: Price competition, kinked demand curves and Edgeworth cycles, Econometrica, 56, 571–99.

    MathSciNet  Google Scholar 

  81. Maskin, E. and J. tirole (2001), Markov-perfect equilibrium: I. observable actions, Journal of Economic Theory, 100, 191–219.

    CrossRef  MathSciNet  Google Scholar 

  82. Mertens, J.-F. (2002), Stochastic games, in R. Aumann and S. Hart, eds. Handbook of Game Theory, vol. 3, Amsterdam: Elsevier, 1810–1832.

    Google Scholar 

  83. Mertens, J.-F. and T. Parthasarathy (2003), Equilibria for discounted stochastic games, in Neyman, A. and S. Sorin, eds., Stochastic Games and Applications. Dordrecht and Boston: Kluwer, 131–172 (initially circulated as CORE D.P. 8750, 1987).

    Google Scholar 

  84. Milgrom, P. and J. Roberts (1990), Rationalizability, learning, and equilibrium in games with strategic complementarities, Econometrica, 58, 1255–78.

    MathSciNet  Google Scholar 

  85. Milgrom, P. and J. Roberts (1994), Comparing equilibria, American Economic Review, 84, 441–459.

    Google Scholar 

  86. Milgrom, P. and C. Shannon (1994), Monotone comparative statics, Econometrica, 62, 157–180.

    MathSciNet  Google Scholar 

  87. Monahan, G. and M. Sobel (1994), Stochastic dynamic market share attraction games, Games and Economic Behavior, 6, 130–49.

    CrossRef  MathSciNet  Google Scholar 

  88. Neyman, A. and S. Sorin, eds. (2003), Stochastic Games and Applications. Dordrecht and Boston: Kluwer.

    Google Scholar 

  89. Nowak, A. (2003), On a new class of nonzero sum discounted stochastic games having stationary Nash equilibrium points, International Journal of Game Theory, 32, 121–132.

    CrossRef  MATH  MathSciNet  Google Scholar 

  90. Nowak, A. and T. Raghavan (1992), Existence of stationary correlated equilibria with symmetric information for discounted stochastic games, Mathematics of Operations Research 17, 519–526.

    MathSciNet  Google Scholar 

  91. Padilla, J. (1995), Revisiting dynamic duopoly with switching costs, Journal of Economic Theory, 67, 520–530.

    CrossRef  MATH  Google Scholar 

  92. Pakes, A. and Ericson, R. (1998), Empirical implications of alternative models of firm dynamics, Journal of Economic Theory; 79, 1–45.

    CrossRef  Google Scholar 

  93. Pakes, A. and P. McGuire (1994), Computing Markov perfect Nash equilibria: Numerical implications of a dynamic differentiated product model, Rand Journal of Economics, 25, 555–589.

    CrossRef  Google Scholar 

  94. Pakes, A. and P. McGuire (2001), Stochastic algorithms, symmetric Markov perfect equilibrium and the curse of dimensionality, Econometrica, 59, 1261–1281.

    CrossRef  MathSciNet  Google Scholar 

  95. Phelps, E. and R. Pollack (1968), On second-best national savings and game-equilibrium growth, Review of Economic Studies, 35, 185–99.

    CrossRef  Google Scholar 

  96. Pindyck, R. (1977), Optimal economic stabilization policies under decentralized control and conflicting objectives, IEEE Transactions on Automatic Control, 22, 517–530.

    CrossRef  MATH  MathSciNet  Google Scholar 

  97. Raghavan, T., T. Parthasarathy, T. Ferguson and O. Vrieze, eds. (1991), Stochastic Games and Related Topics, Norwell, MA and Dordrecht: Kluwer Academic.

    Google Scholar 

  98. Reinganum, J. (1981), Dynamic games of innovation, Journal of Economic Theory, 25, 21–41.

    CrossRef  MATH  MathSciNet  Google Scholar 

  99. Reinganum and Stokey (1985), Oligopoly extraction of a common-property natural resource: The inportance of the period of commitment in dynamic games, International Economic Review, 26, 161–173.

    MathSciNet  Google Scholar 

  100. Reynolds, S. (1987), Capacity investment, preemption and commitment in an infinite-horizon model, International Economic Review, 28.

    Google Scholar 

  101. Reynolds, S. (1991), Oligopoly with capacity adjustment costs, Journal of Economic Dynamics and Control, 15, 491–514.

    CrossRef  MATH  MathSciNet  Google Scholar 

  102. Rosen, J. (1965), Existence and uniqueness of equilibrium points for concave n-person games, Econometrica, 33, 520–534.

    MATH  MathSciNet  Google Scholar 

  103. Rosenthal (1982), A dynamic model of duopoly with consumer loyalties, Journal of Economic Theory, 27, 69–76.

    CrossRef  MATH  Google Scholar 

  104. Rosenthal (1986), Dynamic duopoly with incomplete consumer loyalties, International Economic Review, 27, 399–406.

    MATH  MathSciNet  Google Scholar 

  105. Rust, J. (1994), Estimation of dynamic structural models, problems and prospects: Discrete decision processes, in C. Sims, ed., Advances in Econometrics, Sixth World Congress, Cambridge.

    Google Scholar 

  106. Salant, S. (1976), Exhaustible resources and industrial structure: A Cournot-Nash approach to the world oil market, Journal of Political Economy, 84, 1079, 1093.

    CrossRef  Google Scholar 

  107. Schwalbe, U. and P. Walker (2001), Zermelo and the early history of game theory, Games and Economic Behavior, 34, 123–37.

    CrossRef  MathSciNet  Google Scholar 

  108. Shapley, L. (1953), Stochastic games, Proceedings of the National Academy of Sciences of the USA, 39, 1095–1100.

    CrossRef  PubMed  CAS  MATH  MathSciNet  ADS  Google Scholar 

  109. Slade, M. (1999), Sticky prices in a dynamic oligopoly: An investigation of (s,S) thresholds, International Journal of Industrial Organization, 17, 477–511.

    CrossRef  Google Scholar 

  110. Slade, M. (1998), Optimal pricing with costly adjustment: Evidence from retail grocery prices, Review of Economic Studies; 65, 87–107.

    CrossRef  MATH  Google Scholar 

  111. Shubik, M. and W. Whitt (1973), Fiat money in an economy with one nondurable good and no credit, Topics in Differential Games, A. Blaquiere ed., 401–48, North-Holland.

    Google Scholar 

  112. Sobel, M. (1982), Stochastic fishery game with myopic equilibria, in Mirman, L. and D. Spulber eds., Essays in the Economics of Renewable Resources, North-Holland, 259–268.

    Google Scholar 

  113. Spence, M. (1979), Investment strategy and growth in a new market, Bell Journal of Economics, 10, 1–19.

    CrossRef  Google Scholar 

  114. Spence, M. (1981), The learning curve and competition, Bell Journal of Economics, 12, 49–70.

    CrossRef  ADS  Google Scholar 

  115. Spence, M. (1984), Cost reduction, competition, and industry performance, Econometrica, 52, 101–21.

    Google Scholar 

  116. von Stengel, B., A. van den Elzen, and D. Talman (2002), Computing Normal Form Perfect Equilibria for Extensive Two-Person Games, Econometrica, 70, 693–715.

    CrossRef  MathSciNet  Google Scholar 

  117. Stokey, N., R. Lucas with E. Prescott (1989), Recursive Methods in Economics Dynamics, Princeton University Press, Princeton, NJ.

    Google Scholar 

  118. Tarski, A. (1955), A lattice-theoretical fixpoint theorem and its applications, Pacific Journal of Mathematics, 5, 285–309.

    MATH  MathSciNet  Google Scholar 

  119. Topkis, D. (1968), Ordered optimal solutions, PhD thesis, Stanford Univ.

    Google Scholar 

  120. Topkis, D. (1978), Minimizing a submodular function on a lattice, Operations Research, 26, 305–321.

    CrossRef  MATH  MathSciNet  Google Scholar 

  121. Topkis, D. [1998], Supermodularity and Complementarity, Princeton University Press, Princeton, NJ.

    Google Scholar 

  122. Vives, X. (1990), Nash equilibrium with strategic complementarities, Journal of Mathematical Economics, 19, 305–321.

    CrossRef  MATH  MathSciNet  Google Scholar 

  123. Vives, X. (1999): Oligopoly Pricing. Old Ideas and New Tools, MIT Press.

    Google Scholar 

  124. Walker, M. and J. Wooders (2001), Minmax play at Wimbledon, American Economic Review, 91, 1521–1538.

    CrossRef  Google Scholar 

  125. Whitt, W. (1980), Representation and approximation of noncooperative sequential games, SIAM Journal of Control and Optimization, 18, 33–48.

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin · Heidelberg

About this chapter

Cite this chapter

Amir, R. (2006). Dynamic Games in Economics. In: Dana, RA., Le Van, C., Mitra, T., Nishimura, K. (eds) Handbook on Optimal Growth 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32310-4_14

Download citation

Publish with us

Policies and ethics