Skip to main content

Equilibrium Dynamics with Many Agents

  • Chapter

13.6 Conclusion

Time preference influences intertemporal allocations. Ramsey’s many agent model provides us with a framework for seeing how individual tastes can influence an economy’s development and the distribution of its produce. The ways in which it differs from the representative agent theory may, with further research, provide us with a foundation for macrodynamic models with many agents where there interactions influence the level of macroeconomic activity and the conduct of macroeconomic policy.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker’s Guide, 2nd Edition, Springer-Verlag, Berlin, 1999.

    Google Scholar 

  2. Charalambos D. Aliprantis, Kim C. Border, and Owen Burkinshaw, “New Proof of the Existence of Equilibrium in a Single-Sector Growth Model,” Macroeconomic Dynamics, 1 (1997), 669–679.

    CrossRef  Google Scholar 

  3. Costas Azariadis, Intertemporal Macroeconomics, Basil Blackwell Publishers, Cambridge, 1993.

    Google Scholar 

  4. Robert J. Barro and Xavier Sala-i-Martin, Economic Growth, 2nd Edition, The MIT Press, Cambridge, 2004.

    Google Scholar 

  5. Robert A. Becker, “On the Long-Run Steady State in a Simple Dynamic Model of Equilibrium with Heterogeneous Households,” Quarterly Journal of Economics, 95 (1980), 375–382.

    CrossRef  Google Scholar 

  6. Robert A. Becker, “Cooperative Capital Accumulation Games and the Core,” in Economic Theory and International Trade: Essays in Memoriam J. Trout Rader (Wilhelm Neuefeind and Raymond G. Riezman, eds.), Springer-Verlag, 1992.

    Google Scholar 

  7. Robert A. Becker, “Stationary Strategic Ramsey Equilibrium,” Working Paper, Indiana University, 2003.

    Google Scholar 

  8. Robert A. Becker and John H. Boyd III, Capital Theory, Equilibrium Analysis and Recursive Utility, Basil Blackwell Publishers, Malden, MA, 1997.

    Google Scholar 

  9. Robert A. Becker, John H. Boyd III, and Ciprian Foias, “The Existence of Ramsey Equilibrium,” Econometrica, 59 (1991), 441–460.

    CrossRef  MathSciNet  Google Scholar 

  10. Robert A. Becker and Subir K. Chakrabarti, “The Recursive Core,” Econometrica 63 (1995), 401–423.

    CrossRef  Google Scholar 

  11. Robert A. Becker and Baoline Chen, “Implicit Programming and Computing the Invariant Manifold for Dynamic Equilibrium Problems,” Indiana University Working Paper, February 2000.

    Google Scholar 

  12. Robert A. Becker and Ciprian Foias, “A Characterization of Ramsey Equilibrium,” Journal of Economic Theory, 41 (1987), 173–184.

    CrossRef  MathSciNet  Google Scholar 

  13. Robert A. Becker and Ciprian Foias, “Convergent Ramsey Equilibria,” Libertas Mathematica, 10 (1990), 41–52.

    MathSciNet  Google Scholar 

  14. Robert A. Becker and Ciprian Foias, “The Local Bifurcation of Ramsey Equilibrium,” Economic Theory, 4 (1994), 719–744.

    CrossRef  MathSciNet  Google Scholar 

  15. Robert A. Becker and Ciprian Foias, “Implicit Programming and the Invariant Manifold for Ramsey Equilibria,” in Functional Analysis and Economic Theory (Yuri Abramovich, Evgenious Avgerinos, and Nicholas Yannelis, eds.), Springer-Verlag, 1998.

    Google Scholar 

  16. Robert A. Becker and Itzhak Zilcha, “Stationary Ramsey Equilibria Under Uncertainty,” Journal of Economic Theory, 75 (1997), 122–140.

    CrossRef  MathSciNet  Google Scholar 

  17. Robert A. Becker and Eugene N. Tsyganov, “Ramsey Equilibrium in a Two-Sector Model with Heterogeneous Households,” Journal of Economic Theory, 105 (2002), 188–225.

    CrossRef  MathSciNet  Google Scholar 

  18. Richard Bellman, Dynamic Programming, Princeton University Press, Princeton, N.J., 1957.

    Google Scholar 

  19. Michael Ben-Gad, “Balanced-Growth Consistent Recursive Utility and Heterogeneous Agents,” Journal of Economic Dynamics and Control, 23 (1999), 459–462.

    CrossRef  Google Scholar 

  20. Jess Benhabib, Saqib Jafarey, and Kazuo Nishimura, “The Dynamics of Efficient Intertemporal Allocations with Many Agents, Recursive Preferences and Production,” Journal of Economic Theory, 44 (1988), 301–320.

    CrossRef  MathSciNet  Google Scholar 

  21. Ernst R. Berndt, “Reconciling Alternative Estimates of the Elasticity of Substitution,” Review of Economics and Statistics, 58 (1976), 59–68.

    CrossRef  MathSciNet  Google Scholar 

  22. Claude Berge, Topological Spaces, Dover Publications, 1997.

    Google Scholar 

  23. Truman F. Bewley, “An Integration of Equilibrium Theory and Turnpike Theory,” Journal of Mathematical Economics, 10 (1982), 233–267.

    CrossRef  MATH  MathSciNet  Google Scholar 

  24. Truman F. Bewley, “Dynamic Implications of the Form of the Budget Constraint,” in Models of Economic Dynamics (Hugo F. Sonnenschein, ed.), Springer-Verlag, Berlin, 1986.

    Google Scholar 

  25. Christopher J. Bliss, Capital Theory and the Distribution of Income, North-Holland, Amsterdam, 1975.

    Google Scholar 

  26. Christopher J. Bliss, “The Real Rate of Interest: A Theoretical Analysis,” Oxford Review of Economic Policy, 15 (1999), 46–58.

    CrossRef  Google Scholar 

  27. Christopher J. Bliss, “Koopmans Recursive Preferences and Income Convergence,” Journal of Economic Theory, 117 (2004), 124–139.

    CrossRef  MATH  MathSciNet  Google Scholar 

  28. John H. Boyd III, Preferences, Technology and Dynamic Equilibria, Ph.D. Dissertation, Indiana University (Bloomington), 1986.

    Google Scholar 

  29. John H. Boyd III, “Dynamic Tax Incidence with Heterogeneous Agents,” Working Paper, University of Rochester, 1990.

    Google Scholar 

  30. John H. Boyd III, “Symmetries, Dynamic Equilibria, and the Value Function,” in Conservation Laws and Symmetry: Applications to Economics and Finance (R. Sato and R.V. Ramachandran, eds.), Kluwer Academic Publishers, 1990.

    Google Scholar 

  31. William A. Brock, Comments on Radner’s “Market Equilibrium under Uncertainty,” in Frontiers of Quantitative Economics (John J. McCall, ed.), North-Holland, 1974.

    Google Scholar 

  32. William A. Brock and Leonard Mirman, “Optimal Consumption Growth and Uncertainty: The Discounted Case,” Journal of Economic Theory, 4 (1972), 479–513.

    CrossRef  MathSciNet  Google Scholar 

  33. Edwin Burmeister, Capital Theory and Dynamics, Cambridge University Press, Cambridge, 1980.

    Google Scholar 

  34. Edwin Burmeister and A. Rodney Dobell, Mathematical Theories of Economic Growth, MacMillan, New York, 1970.

    Google Scholar 

  35. Jeffrey L. Coles, “Equilibrium Turnpike Theory with Constant Returns to Scale and Possibly Heterogeneous Discount Factors,” International Economic Review, 26 (1985), 671–679.

    CrossRef  MATH  MathSciNet  ADS  Google Scholar 

  36. Jeffrey L. Coles, “Equilibrium Turnpike Theory with Time-Separable Utility,” Journal of Economic Dynamics and Control, 10 (1986), 367–394.

    CrossRef  MATH  MathSciNet  Google Scholar 

  37. Rose-Anne Dana and Cuong Le Van, “Structure of Pareto Optima in an Infinite-Horizon Economy Where Agents Have Recursive Preferences,” Journal of Optimization Theory and Applications, 64 (1990), 269–292.

    CrossRef  MathSciNet  Google Scholar 

  38. Rose-Anne Dana and Cuong Le Van, “Equilibria of a Stationary Economy with Recursive Preferences,” Journal of Optimization Theory and Applications, 71 (1991), 289–313.

    CrossRef  MathSciNet  Google Scholar 

  39. Rose-Anne Dana and Cuong Le Van, “Optimal Growth and Pareto Optimality,” Journal of Mathematical Economics, 20 (1991), 155–180.

    CrossRef  MathSciNet  Google Scholar 

  40. James Davidson, Stochastic Limit Theory, Cambridge University Press, 1994.

    Google Scholar 

  41. David de la Croix and Phillipe Michel, A Theory of Economic Growth, Cambridge University Press, Cambridge, UK, 2002.

    CrossRef  Google Scholar 

  42. James F. Dolmas, “Balanced-growth Consistent Recursive Utility,” Journal of Economic Dynamics and Control, 20 (1996), 657–680.

    CrossRef  Google Scholar 

  43. Jorge Durán and Cuong Le Van, “Simple Proof of Existence of Equilibrium in a One-Sector Growth Model with Bounded or Unbounded Returns From Below,” Macroeconomic Dynamics, 7 (2003), 317–332.

    CrossRef  Google Scholar 

  44. Larry G. Epstein and J. Allan Hynes, “The Rate of Time Preference and Dynamic Economic Analysis,” Journal of Political Economy, 41 (1983), 611–635.

    CrossRef  Google Scholar 

  45. Roger E.A. Farmer, Macroeconomics of Self-Fulfilling Prophecies, second edition, The MIT Press, Cambridge, 1999.

    Google Scholar 

  46. Irving Fisher, The Rate of Interest, MacMillan Company, New York, 1907, reprinted by Garland Publishing, 1982.

    Google Scholar 

  47. Irving Fisher, Elementary Principles of Economics, MacMillan Company, New York, 1912.

    Google Scholar 

  48. Irving Fisher, Theory of Interest, MacMillan Company, New York, 1930, reprinted by Augustus M. Kelley, 1970.

    Google Scholar 

  49. Shane Frederick, George Lowenstein, and Ted O’Donoghue, “Time Discounting and Time Preference: A Critical Review,” Journal of Economic Literature, 40 (2002), 351–401.

    CrossRef  Google Scholar 

  50. David Gale, “Nonlinear Duality and Qualitative Properties of Optimal Growth,” in J. Abadie, ed., Integer and Nonlinear Programming, North-Holland, Amsterdam, Chapter 13, 309–319, 1970.

    Google Scholar 

  51. David Gale, Tracking the Automatic Ant and Other Mathematical Explorations, Springer-Verlag, New York, 1998.

    Google Scholar 

  52. John Galsworthy, “Indian Summer of a Forsyte,” originally published in 1917, compiled in: The Forsyte Saga, Scribner Paperback Fiction, Simon & Schuster, New York, 2002.

    Google Scholar 

  53. Christian Ghiglino, “Introduction to Economic Growth and General Equilibrium,” Journal of Economic Theory, 105 (2002), 1–17.

    CrossRef  MATH  MathSciNet  Google Scholar 

  54. Christian Ghiglino, “Wealth Inequality and Dynamic Stability,” Journal of Economic Theory, forthcoming.

    Google Scholar 

  55. Christian Ghiglino and Marielle Olszak-Duquenne, “Inequalities and Fluctuations in a Dynamic General Equilibrium Model,” Economic Theory, 17 (2001), 1–24.

    CrossRef  MathSciNet  Google Scholar 

  56. Roger Guesnerie and Michael Woodford, “Endogenous Fluctuations,” in Advances in Economic Theory Sixth World Congress, Volume II (Jean-Jacques Laffont, ed.), Cambridge University Press, 1992.

    Google Scholar 

  57. Ismail Hadji and Cuong Le Van, “Convergence of Equilibria in an Intertemporal General Equilibrium Model: A Dynamical System Approach,” Journal of Economic Dynamics and Control, 18 (1994), 381–396.

    CrossRef  MathSciNet  Google Scholar 

  58. G.H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949.

    Google Scholar 

  59. Alejandro Hernández D., “The Dynamics of Competitive Equilibrium Allocations with Borrowing Constraints,” Journal of Economic Theory, 55 (1991), 180–191.

    CrossRef  Google Scholar 

  60. Kenneth L. Judd, Numerical Methods in Economics, The MIT Press, Cambridge, 1998.

    Google Scholar 

  61. Timothy J. Kehoe, “Intertemporal General Equilibrium Models,” in Frank Hahn, Ed., The Economics of Missing Markets, Information, and Games, Clarendon Press, Oxford, 1989.

    Google Scholar 

  62. Timothy J. Kehoe, “Computation and Multiplicity of Equilibria,” in Handbook of Mathematical Economics, Volume IV (Werner Hildenbrand and Hugo Sonnenschein, eds.), North-Holland, Amsterdam, 1991.

    Google Scholar 

  63. Timothy J. Kehoe and David K. Levine, “Comparative Statics and Perfect Foresight in Infinite Horizon Economies,” Econometrica, 53 (1985), 433–454.

    CrossRef  MathSciNet  Google Scholar 

  64. Timothy J. Kehoe, David K. Levine, and Paul M. Romer, “Steady States and Determinacy of Equilibria with Infinitely Lived Agents,” in Joan Robinson and Modern Economic Theory (George R. Feiwel, ed.), New York University Press, New York, 1989.

    Google Scholar 

  65. Timothy J. Kehoe, David K. Levine, and Paul M. Romer, “Determinacy of Equilibria in Dynamic Models with Finitely Many Consumers,” Journal of Economic Theory, 50 (1990), 1–21.

    CrossRef  MathSciNet  Google Scholar 

  66. Timothy J. Kehoe, David K. Levine, and Paul M. Romer, “On Characterizing Equilibria of Economies with Externalities and Taxes as Solutions to Optimization Problems,” Economic Theory, 2 (1992), 43–68.

    CrossRef  Google Scholar 

  67. Ben P. Klotz, The Macroeconomics of Anticipated Events, 1stbooks.com, 2001.

    Google Scholar 

  68. Cuong Le Van and Yiannis Vailakis, “Existence of a Competitive Equilibrium in a One-Sector Growth Model with Heterogeneous Agents and Irreversible Investment,” Economic Theory, 22 (2003), 743–771.

    CrossRef  MathSciNet  Google Scholar 

  69. Lars Ljungqvist and Thomas J. Sargent, Recursive Macroeconomic Theory, The MIT Press, Cambridge, MA.,2000.

    Google Scholar 

  70. Robert E. Lucas, Jr. and Nancy L. Stokey, “Optimal Growth with Many Consumers,” Journal of Economic Theory, 32 (1984), 139–171.

    CrossRef  MathSciNet  Google Scholar 

  71. Michael J.P. Magill, “Some New Results on the Local Stability of the Process of Capital Accumulation,” Journal of Economic Theory, 15 (1977), 174–210.

    CrossRef  MATH  MathSciNet  Google Scholar 

  72. N. Gregory Mankiw, “The Savers-Spenders Theory of Fiscal Policy,” American Economic Review Papers and Proceedings, 90 (2000), 120–125.

    CrossRef  Google Scholar 

  73. Rodolfo E. Manuelli and Thomas J. Sargent, Exercises in Dynamic Macroeconomic Theory, Harvard University Press, Cambridge, 1987.

    Google Scholar 

  74. Ramon Marimon, “Stochastic Turnpike Property and Stationary Equilibrium,” Journal of Economic Theory, 47 (1989), 282–306.

    CrossRef  MATH  MathSciNet  Google Scholar 

  75. Frederick R. Marotto, “Snap-Back Repellers Imply Chaos in ℝn,” Journal of Mathematical Analysis and Its Applications, 63 (1978), 199–223.

    CrossRef  MATH  MathSciNet  Google Scholar 

  76. Andreu Mas-Colell, The Theory of General Economic Equilibrium: A Differentiable Approach, Cambridge University Press, Cambridge, 1985.

    Google Scholar 

  77. Robert M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, and Oxford University Press, Oxford, UK, 2001 [Reprint of second edition, 1974].

    Google Scholar 

  78. Lionel W. McKenzie, “Optimal Economic Growth, Turnpike Theorems and Comparative Dynamics,” in Handbook of Mathematical Economics, Volume III, (Kenneth J. Arrow and Michael D. Intrilligator, eds.), North-Holland, Amsterdam, 1986.

    Google Scholar 

  79. Lionel W. McKenzie, Classical General Equilibrium Theory, The MIT Press, Cambridge, MA., 2002.

    Google Scholar 

  80. Leonard J. Mirman and Itzhak Zilcha, “On Optimal Growth under Uncertainty,” Journal of Economic Theory, 11 (1975), 329–339.

    CrossRef  MathSciNet  Google Scholar 

  81. Leonard Mirman and Itzhak Zilcha, “On Optimal Growth Under Uncertainty,” Journal of Economic Theory, 11 (1975), 329–339.

    CrossRef  MathSciNet  Google Scholar 

  82. Jacques Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, Inc., San Francisco, 1965.

    Google Scholar 

  83. Kazuo Nishimura and Makoto Yano, “Non-linearity and Business Cycles in a Two-Sector Equilibrium Model: An Example with Cobb-Douglas Production Functions,” in Nonlinear and Convex Analysis in Economic Theory (T. Maruyama and W. Takahashi, eds.), Springer-Verlag, New York, 1995.

    Google Scholar 

  84. Bezalel Peleg and Menachem E. Yaari, “Markets with Countably Many Commodities,” International Economic Review, 11 (1970), 369–377.

    CrossRef  Google Scholar 

  85. Trout Rader, The Economics of Feudalism, Gordon and Breach, New York, 1971.

    Google Scholar 

  86. Trout Rader, Theory of General Economic Equilibrium, Academic Press, New York, 972.

    Google Scholar 

  87. Trout Rader, “Utility Over Time: The Homothetic Case,” Journal of Economic Theory, 25 (1981), 219–236.

    CrossRef  MATH  MathSciNet  ADS  Google Scholar 

  88. Roy Radner, “Optimal Stationary Consumption with Stochastic Production and Resources,” Journal of Economic Theory, 6 (1973), 68–90.

    CrossRef  MathSciNet  Google Scholar 

  89. John Rae, Statement of Some New Principles of Political Economy, Hilliard, Gray, and Co., Boston, reprinted by Augustus M. Kelley Publishers, 1964.

    Google Scholar 

  90. Frank P. Ramsey, “A Mathematical Theory of Saving,” Economic Journal, 38 (1928), 543–559.

    CrossRef  Google Scholar 

  91. Frank P. Ramsey, Philosophical Papers (D.M. Mellor, ed.), Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  92. Thomas J. Sargent, Dynamic Macroeconomic Theory, HarvardUniversity Press, Cambridge, 1987.

    Google Scholar 

  93. R. Tyrell Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.

    Google Scholar 

  94. Nils-Erik Sahlin, The Philosophy of F.P. Ramsey, Cambridge University Press, 1990.

    Google Scholar 

  95. Pierre-Daniel G. Sarte, “Progressive Taxation and Income Inequality in Dynamic Competitive Equilibrium,” Journal of Public Economics, 66 (1997), 145–171.

    CrossRef  Google Scholar 

  96. Robert M. Solow, “A Contribution to the Theory of Economic Growth,” Quarterly Journal of Economics, 70 (1956), 65–94.

    CrossRef  Google Scholar 

  97. Gerhard Sorger, “On the Structure of Ramsey Equilibrium: Cycles, Indeterminacy, and Sunspots,” Economic Theory, 4 (1994), 745–764.

    CrossRef  MATH  MathSciNet  Google Scholar 

  98. Gerhard Sorger, “Chaotic Ramsey Equilibrium,” International Journal of Bifurcation and Chaos, 5 (1995), 373–380.

    CrossRef  MATH  MathSciNet  Google Scholar 

  99. Gerhard Sorger, “On the Long-Run Distribution of Capital in the Ramsey Model,” Journal of Economic Theory, 105 (2002), 226–243.

    CrossRef  MATH  MathSciNet  Google Scholar 

  100. Michael L. Stern, personal communication, June 1, 1998.

    Google Scholar 

  101. Joseph E. Stiglitz, “Distribution of Income and Wealth Among Individuals,” Econometrica, 37 (1969), 382–397.

    CrossRef  Google Scholar 

  102. Eammanuel Thibault, “Existence and Specific Characters of Rentiers: A Savers-Spenders Theory Approach,” Economic Theory 25 (2005), 401–419.

    CrossRef  MATH  MathSciNet  Google Scholar 

  103. Matatsugu Tsuji, “A Note on Professor Stiglitz’ ‘Distribution of Income and Wealth Among Individuals,’” Econometrica, 40 (1972), 947–949.

    CrossRef  Google Scholar 

  104. Henry Wan, Jr., “A Simultaneous Variational Model for International Capital Movements,” in Trade, Balance of Payments, and Growth (J. Bhagwati, et al., eds.), North-Holland, Amsterdam, 1971.

    Google Scholar 

  105. Michael Woodford, “Imperfect Financial Intermediation and Complex Dynamics,” in Economic Complexity, Chaos, Sunspots, Bubbles, and Nonlinearity (William A. Barnett, John Geweke, and Karl Shell, eds.), Cambridge University Press, 1989.

    Google Scholar 

  106. Makoto Yano, “Competitive Equilibria on Turnpikes in a McKenzie Economy, I: A Neighborhood Turnpike Theorem,” International Economic Review, 25 (1984), 695–718.

    CrossRef  MATH  MathSciNet  Google Scholar 

  107. Makoto Yano, “Temporary Transfers in a Simple Dynamic General Equilibrium Model,” Journal of Economic Theory, 54 (1991), 372–388.

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin · Heidelberg

About this chapter

Cite this chapter

Becker, R.A. (2006). Equilibrium Dynamics with Many Agents. In: Dana, RA., Le Van, C., Mitra, T., Nishimura, K. (eds) Handbook on Optimal Growth 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32310-4_13

Download citation

Publish with us

Policies and ethics