Skip to main content

The von Neumann-Gale Growth Model and Its Stochastic Generalization

  • Chapter
Handbook on Optimal Growth 1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Aghion, P., and P. Howitt: Endogenous Growth Theory, MIT Press, Cambridge, 1998.

    Google Scholar 

  2. Akin, E.: The General Topology of Dynamical Systems, American Mathematical Society, Providence, 1993.

    Google Scholar 

  3. Algoet, P.H., and T.M. Cover: “Asymptotic optimality and asymptotic equipartition properties of log-optimum investment,” Annals of Probability 16 (1988), 876–898.

    Article  MathSciNet  Google Scholar 

  4. Amir, R.: “Sensitivity analysis in multisector optimal economic dynamics,” Journal of Mathematical Economics 25 (1996), 123–141.

    Article  MATH  MathSciNet  Google Scholar 

  5. Amir, R., and I.V. Evstigneev: “A functional central limit theorem for equilibrium paths of economic dynamics,” Journal of Mathematical Economics 33 (2000), 81–99.

    Article  MathSciNet  Google Scholar 

  6. Anoulova, S.V., I.V. Evstigneev, and V.M. Gundlach: “Turnpike theorems for positive multivalued stochastic operators,” Advances in Mathematical Economics 2 (2000), 1–20.

    MathSciNet  Google Scholar 

  7. Arkin, V.I., and I.V. Evstigneev: Stochastic Models of Control and Economic Dynamics, Academic Press, London, 1987.

    Google Scholar 

  8. Arnold, L.: Random Dynamical Systems, Springer-Verlag, Berlin, 1998.

    Google Scholar 

  9. Arnold, L., I.V. Evstigneev, and V.M. Gundlach: “Convex-valued random dynamical systems: A variational principle for equilibrium states,” Random Operators and Stochastic Equations 7 (1999), 23–38.

    Article  MathSciNet  Google Scholar 

  10. Arnold, L., V.M. Gundlach, and L. Demetrius: “Evolutionary formalism for products of positive random matrices,” Annals of Applied Probability 4 (1994), 859–901.

    Article  MathSciNet  Google Scholar 

  11. Barro, R.J., and X. Sala-i-Martin: Economic Growth, McGraw-Hill, New York, 1995.

    Google Scholar 

  12. Belenky, V.Z.: “A stochastic stationary model for optimal control of an economy,” in Studies in Stochastic Control Theory and Mathematical Economics (N.Ya. Petrakov et al., eds.), pages 3–24, CEMI, Moscow, 1981 (in Russian).

    Google Scholar 

  13. Brock, W.A., and W.D. Dechert: Growth Theory, Nonlinear Dynamics and Economic Modelling: Scientific Essays of William Allen Brock (Economists of the Twentieth Century), Edward Elgar Publ., Cheltenham, 2001.

    Google Scholar 

  14. de Hek, P.: “On endogenous growth under uncertainty,” International Economic Review 40 (1999), 727–744.

    Article  ADS  Google Scholar 

  15. de Hek, P., and S. Roy: “On sustained growth under uncertainty,” International Economic Review 42 (2001), 801–814.

    Article  MathSciNet  Google Scholar 

  16. Dempster, M.A.H., I.V. Evstigneev, and K.R. Schenk-Hoppé: “Exponential growth of fixed-mix strategies in stationary asset markets,” Finance and Stochastics 7 (2003), 263–276.

    Article  MathSciNet  Google Scholar 

  17. Dempster, M.A.H., I.V. Evstigneev, and K.R. Schenk-Hoppé: “Volatility-induced financial growth,” Working Paper No. 10/2004, Institute for Financial Research, University of Cambridge, 2004.

    Google Scholar 

  18. Dynkin, E.B.: “Some probability models for a developing economy,” Soviet Mathematics Doklady 12 (1971), 1422–1425.

    MATH  Google Scholar 

  19. Dynkin, E.B., and A.A. Yushkevich: Controlled Markov Processes and Their Applications, Springer-Verlag, New York, 1979.

    Google Scholar 

  20. Evstigneev, I.V.: “Positive matrix-valued cocycles over dynamical systems,” Uspekhi Matematicheskikh Nauk 29 (1974), 219–220 (in Russian).

    MATH  MathSciNet  Google Scholar 

  21. Evstigneev, I.V.: “Homogeneous convex models in the theory of controlled random processes,” Soviet Mathematics Doklady 22 (1980), 108–111.

    MATH  Google Scholar 

  22. Evstigneev, I.V., and S.D. Flåm: “Rapid growth paths in multivalued dynamical systems generated by homogeneous convex stochastic operators,” Set-Valued Analysis 6 (1998), 61–82.

    Article  MathSciNet  Google Scholar 

  23. Evstigneev, I.V., and Yu.M. Kabanov: “Probabilistic modification of the von Neumann-Gale model,” Russian Mathematical Surveys 35 (1980), 185–186.

    Article  MathSciNet  Google Scholar 

  24. Evstigneev, I.V., and S.E. Kuznetsov: “Probabilistic variant of the turnpike theorem for homogeneous convex controllable models,” Mathematical Notes 33 (1983), 185–194.

    MathSciNet  Google Scholar 

  25. Evstigneev, I.V., and K.R. Schenk-Hoppé: “From rags to riches: On constant proportions investment strategies,” International Journal of Theoretical and Applied Finance 5 (2002), 563–573.

    Article  MathSciNet  Google Scholar 

  26. Evstigneev, I.V., and K.R. Schenk-Hoppé: “Pure and randomized equilibria in the stochastic von Neumann-Gale model,” Discussion Paper 0507, School of Economic Studies, University of Manchester, 2005.

    Google Scholar 

  27. Evstigneev, I.V., and M.I. Taksar: “Rapid growth paths in convex-valued random dynamical systems,” Stochastics and Dynamics 1 (2001), 493–509.

    Article  MathSciNet  Google Scholar 

  28. Evstigneev, I.V., and M.I. Taksar: “Asset pricing and hedging under transaction costs: An approach based on the von Neumann-Gale model,” Discussion Paper 0422, School of Economic Studies, University of Manchester, 2004.

    Google Scholar 

  29. Föllmer, H., and A. Schied: Stochastic Finance: An Introduction in Discrete Time, Walter de Gruyter, Berlin, 2002.

    Book  Google Scholar 

  30. Gale, D.: “A closed linear model of production,” in: Linear Inequalities and Related Systems (H.W. Kuhn and A.W. Tucker, eds.), pages 285–303, Princeton University Press, Princeton, 1956.

    Google Scholar 

  31. Gale, D.: “A mathematical theory of optimal economic development,” Bulletin of the American Mathematical Society 74 (1968), 207–223.

    Article  MATH  MathSciNet  Google Scholar 

  32. Gale, D.: “A note on the nonexistence of optimal price vectors in the general balanced-growth model of Gale: Comment,” Econometrica 40 (1972), 391–392.

    Article  MathSciNet  Google Scholar 

  33. Hakansson, N.H., and W.T. Ziemba: “Capital growth theory,” in: Handbooks in Operations Research and Management Science, Volume 9, Finance (R.A. Jarrow, V. Maksimovic, W.T. Ziemba, eds.), Chapter 3, pages 65–86, Elsevier, Amsterdam, 1995.

    Google Scholar 

  34. Hulsmann, J., and V. Steinmetz: “A note on the nonexistence of optimal price vectors in the general balanced-growth model of Gale,” Econometrica 40 (1972), 387–389.

    Article  MathSciNet  Google Scholar 

  35. Iyengar, G., and T.M. Cover: “Growth optimal investment in horse race markets with costs,” IEEE Transactions on Information Theory 46 (2000), 2675–2683.

    Article  MathSciNet  Google Scholar 

  36. Kabanov, Yu.M.: “Hedging and liquidation under transaction costs in currency markets,” Finance and Stochastics 3 (1999), 237–248.

    Article  MATH  Google Scholar 

  37. Kabanov, Yu.M.: “The arbitrage theory,” in: Handbooks in Mathematical Finance: Option Pricing, Interest Rates and Risk Management (E. Jouini, J. Cvitanić and M. Musiela, eds.), pages 3–42, Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  38. Kabanov, Yu.M. and C. Stricker: “The Harrison-Pliska arbitrage pricing theorem under transaction costs,” Journal of Mathematical Economics 35 (2001), 185–196.

    Article  MathSciNet  Google Scholar 

  39. Long, J.B.: “The numeraire portfolio,” Journal of Financial Economics 26 (1990), 29–69.

    Article  Google Scholar 

  40. Luenberger, D.G.: Optimization by Vector Space Methods, Wiley, New York, 1969.

    Google Scholar 

  41. Makarov, V.L., and A.M. Rubinov: Mathematical Theory of Economic Dynamics and Equilibria, Springer-Verlag, Berlin, 1977.

    Google Scholar 

  42. McKenzie, L.W.: “Optimal economic growth, turnpike theorems and comparative dynamics,” in Handbook of Mathematical Economics: Volume III (K.J. Arrow and M.D. Intriligator, eds.), pages 1281–1355, North-Holland, Amsterdam, 1986.

    Google Scholar 

  43. McKenzie, L.W.: “Turnpikes,” American Economic Review Papers and Proceedings 88 (1998), 1–14.

    Google Scholar 

  44. Mirman, L.J.: “One sector economic growth and uncertainty: a survey,” in Stochastic Programming (M.A.H. Dempster, ed.), pages 537–567, Academic Press, London, 1980.

    Google Scholar 

  45. Mitra, T., L. Montrucchio, and F. Privileggi: “The nature of steady states in models of optimal growth under uncertainty,” Economic Theory 23 (2003), 39–71.

    Article  MathSciNet  Google Scholar 

  46. Neveu, J.: Mathematical Foundations of the Calculus of Probability Theory, Holden Day, San Francisco, 1965.

    Google Scholar 

  47. Nikaido, H.: Convex Structures and Economic Theory, Academic Press, London, 1968.

    Google Scholar 

  48. Nussbaum, R.D., and S.M. Verduyn Lunel: Generalizations of the Perron-Frobenius Theorem for Nonlinear Maps, Memoirs of the American Mathematical Society, Volume 138, American Mathematical Society, Providence, 1999.

    Google Scholar 

  49. Olson, L.J., and S. Roy: “Theory of stochastic optimal economic growth,” this volume 2005.

    Google Scholar 

  50. Presman, E.L., and A.D. Slastnikov: “Growth rates and optimal paths in stochastic models of expanding economy,” in Proceedings of the International Conference “Stochastic Optimization,” Kiev, 1984 (V.I. Arkin, A. Shiraev and R. Wets, eds.), Lecture Notes in Control and Information Sciences, pages 327–332, Spinger-Verlag, Berlin, 1986.

    Google Scholar 

  51. Radner, R.: “Balanced stochastic growth at the maximum rate,” in: Contributions to the von Neumann Growth Model (Proc. Conf., Inst. Adv. Studies, Vienna, 1970), Zeitschrift für Nationalökonomie Suppl. No. 1 (1971), 39–53.

    Google Scholar 

  52. Radner, R.: “Optimal steady-state behaviour of an economy with stochastic production and resources,” in: Mathematical Topics in Economic Theory and Computation (R.H. Day and S.M. Robinson, eds.), pages 99–112, SIAM, Philadelphia, 1972.

    Google Scholar 

  53. Ramsey, F.: “A mathematical theory of savings,” Economic Journal 38 (1928), 543–559.

    Article  Google Scholar 

  54. Rockafellar, R.T.: Monotone Processes of Convex and Concave Type, Memoirs of the American Mathematical Society, Volume 77, American Mathematical Society, Providence, 1967.

    Google Scholar 

  55. Schachermayer, W.: “The Fundamental Theorem of Asset Pricing under proportional transaction costs in finite discrete time,” Mathematical Finance 14 (2004), 19–48.

    Article  MATH  MathSciNet  Google Scholar 

  56. Solow, R.M.: “A contribution to the theory of economic growth,” Quarterly Journal of Economics 70 (1956), 65–94.

    Article  Google Scholar 

  57. Solow, R.M., and P.A. Samuelson: “Balanced growth under constant returns to scale,” Econometrica 21 (1953), 412–424.

    Article  MathSciNet  Google Scholar 

  58. Stachurski, J.: “Stochastic growth: asymptotic distributions,” Economic Theory 21 (2003), 913–919.

    Article  MATH  MathSciNet  Google Scholar 

  59. Stokey, N.L., R.E. Lucas, and E.C. Prescott: Recursive Methods in Economic Dynamics, Harvard University Press, Cambridge, 1989.

    Google Scholar 

  60. von Neumann, J.: “Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes,” in Ergebnisse eines Mathematischen Kolloquiums, No. 8, 1935–1936 (K. Menger, ed.), pages 73–83, Vienna: Franz-Deuticke, 1937 (in German). (Translated into English by C. Morgenstern: “A model of general economic equilibrium,” Review of Economic Studies 13 (1945–1946), 1–9.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin · Heidelberg

About this chapter

Cite this chapter

Evstigneev, I.V., Schenk-Hoppé, K.R. (2006). The von Neumann-Gale Growth Model and Its Stochastic Generalization. In: Dana, RA., Le Van, C., Mitra, T., Nishimura, K. (eds) Handbook on Optimal Growth 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32310-4_12

Download citation

Publish with us

Policies and ethics