Modification of Cellulose in Wood

  • Matthias Fladung


Secondary Cell Wall Tension Wood Lignin Biosynthesis Cinnamyl Alcohol Dehydrogenase Microfibril Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221–294.PubMedCrossRefGoogle Scholar
  2. Baucher M, Chabbert B, Pilate G, van Doorsselaere J, Tollier MT, Petit Conil M, Cornu D, Monties B, van Montagu M, Inze D, Jouanin L, Boerjan W (1996) Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112:1479–1490.PubMedGoogle Scholar
  3. Baucher M, Halpin C, Petit-Conil M, Boerjan W (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38:305–350.PubMedCrossRefGoogle Scholar
  4. Biemelt S, Tschiersch H, Sonnewald U (2004) Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol 135:254–265.PubMedCrossRefGoogle Scholar
  5. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546.PubMedCrossRefGoogle Scholar
  6. Brown RM Jr (1996) The biosynthesis of cellulose. J Macromol Sci 33:1345–1373.CrossRefGoogle Scholar
  7. Brown RM Jr, Saxena IM, Kudlicka K (1996) Cellulose biosynthesis in higher plants. Trends Plant Sci 1:149–156.CrossRefGoogle Scholar
  8. Busov VB, Meilan R, Pearce DW, Ma C, Rood SB, Strauss SH (2003) Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiol 132:1283–1291.PubMedCrossRefGoogle Scholar
  9. Campbell MM, Brunner AM, Jones HM, Strauss SH (2003) Forestry’s fertile crescent: the application of biotechnology to forest trees. Plant Biotechnol J 1:141–154.PubMedCrossRefGoogle Scholar
  10. Carrera E, Bou J, Garcia-Martinez JL, Prat S (2000) Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. Plant J 22:247–256.PubMedCrossRefGoogle Scholar
  11. Casler MD, Buxton DR, Vogel KP (2002) Genetic modification of lignin concentration affects fitness of perennial herbaceous plants. Theor Appl Gen 104:127–131.CrossRefGoogle Scholar
  12. Delmer DP (1999) Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol 50:245–276.PubMedCrossRefGoogle Scholar
  13. Dinus RJ, Payne P, Sewell NM, Chiang VL, Tuskan GA (2001) Genetic modification of short rotation popular wood: Properties for ethanol fuel and fiber productions. Crit Rev Plant Sci 20:51–69.CrossRefGoogle Scholar
  14. Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420.PubMedCrossRefGoogle Scholar
  15. Eckard NA (2003) Cellulose synthesis takes the CesA train. Plant Cell 15.1685–1687.CrossRefGoogle Scholar
  16. Eriksson ME, Moritz T (2002) Daylength and spatial expression of a gibberellin 20-oxidase isolated from hybrid aspen (Populus tremula L. ¥ P-tremuloides Michx.). Planta 214:920–930.PubMedCrossRefGoogle Scholar
  17. Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length Nature Biotechnol 18:784–788.CrossRefGoogle Scholar
  18. Fink S (1999) Pathological and regenerative plant anatomy. In: Zimmermann W, Braun HJ (eds) Encyclopedia of plant anatomy, vol 14, section 6. Borntaeger, Berlin.Google Scholar
  19. Fladung M, Ahuja MR (1996) Gene transfer in aspen. In: Schmidt ER, Hankeln T (eds) Transgenic organisms and biosafety, horizontal gene transfer, stability of DNA and expression of transgenes. Springer, Berlin Heidelberg New York, pp 275–281.Google Scholar
  20. Fladung M, Muhs HJ, Ahuja MR (1996) Morphological changes observed in transgenic Populus carrying the rolC gene from Agrobacterium rhizogenes. Silvae Genetica 45:349–354.Google Scholar
  21. Fladung M, Kumar S, Ahuja MR (1997) Genetic transformation of Populus genotypes with different chimaeric gene constructs: transformation efficiency and molecular analysis. Transgenic Res 6:111–121.CrossRefGoogle Scholar
  22. Fleet CM, Sun T-p (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8.1:77–85.PubMedCrossRefGoogle Scholar
  23. Grünwald C, Deutsch F, Eckstein D, Fladung M (2000) Wood formation in rolC transgenic aspen trees. Trees 14:297–304.Google Scholar
  24. Haigler CH, Brown RM (1985) The mechanisms of cellulose biosynthesis. Am J Bot 72:881–881.Google Scholar
  25. Hedden P (1999) Recent advances in gibberellin biosynthesis. J Exp Bot 50:553–563.CrossRefGoogle Scholar
  26. Hu W-J, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai C-J, Chiang VL (1999) Repression of lignin biossynthesis promotes cellulose accumulation and growth in transgenic trees. Nature Biotechnol 17:808–812.CrossRefGoogle Scholar
  27. Huang SS, Raman AS, Ream JE, Fujiwara H, Cerny RE, Brown SM (1998) Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol 118:773–781.PubMedCrossRefGoogle Scholar
  28. Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD (2003) Significant increases in pulping efficiency in C4H–F5H-transformed poplars: improved chemical savings and reduced environmental toxins. J Agricul Food Chem 51:6178–6183.CrossRefGoogle Scholar
  29. Israelsson M, Eriksson ME, Hertzberg M, Aspeborg H, Nilsson P, Moritz T (2003) Changes in gene expression in the wood-forming tissue of transgenic hybrid aspen with increased secondary growth. Plant Mol Biol 52:893–903.PubMedCrossRefGoogle Scholar
  30. Israelsson M, Mellerowicz E, Chono M, Gullberg J, Moritz T (2004) Cloning and overproduction of gibberellin 3-oxidase in hybrid aspen trees. Effects of gibberellin homeostasis and development. Plant Physiol 135:221–230.PubMedCrossRefGoogle Scholar
  31. Jackson S (2005) Research. Available from URL:
  32. Joshi CP (2003) Xylem-specific and tension stress-responsive expression of cellulose synthase genes from aspen trees. Appl Biochem Biotech 105:17–25.CrossRefGoogle Scholar
  33. Joshi CP (2004) Molecular genetics of cellulose biosynthesis in trees. In: Kumar S, Fladung M (eds) Molecular genetics and breeding of forest trees. Haworth Press, Binghamton, NY, pp 141–165.Google Scholar
  34. Joshi CP, Bhandari S, Ranjan P, Kalluri UC, Liang X, Fujino T, Samuga A (2004) Genomics of cellulose biosynthesis in poplars. New Phytol 164:53–61.CrossRefGoogle Scholar
  35. Jouanin L, Goujon T, de Nadai V, Martin MT, Mila I, Vallet C, Pollet B, Yoshinaga A, Chabbert B, Petit-Conil M, Lapierre C (2000) Lignification in transgenic poplars with extremely reduced caffeic acid O-methyltransferase activity. Plant Physiol 123:1363–1373.PubMedCrossRefGoogle Scholar
  36. Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leple JC, Boerjan W, Ferret VV, de Nadai V, Jouanin L (1999) Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol 119:153–164.PubMedCrossRefGoogle Scholar
  37. Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci USA 15:4939–4944.CrossRefGoogle Scholar
  38. Meier D, Fortmann I, Odermatt J, Faix O (2003) Pyrolyse-GC/MS und Pyrolyse-GC/FID Untersuchungen an gentechnisch veränderten Pappelklonen. In: Fladung M (ed) Holzbiologische, -chemische, -technologische und phytopathologische Untersuchungen an rolC-transgenen Hybridaspen (P. tremula L. ¥ P. tremuloides Michx.) aus einem Freisetzungsversuch. Mitteilungen der Bundesforschungsanstalt für Forst-und Holzwirtschaft. Kommissionsverlag Max Wiedebusch, Hamburg, pp 33–43.Google Scholar
  39. Meier D, Fortmann I, Odermatt J, Faix O (2005) Discrimination of genetically modified poplar clones by analytical pyrolysis-gas chromatography and principal component analysis. J Anal Appl Pyrolysis 74:129–137.CrossRefGoogle Scholar
  40. Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol 47:239–274.PubMedCrossRefGoogle Scholar
  41. Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy SA, Johal GS (2003) Loss of an MDR transporter of maize br2 and sorghum dw3 mutants. Science 302:81–84.PubMedCrossRefGoogle Scholar
  42. Nevell TP, Zeronian SH (1985) Cellulose chemistry and its applications. Ellis Horwood, New York.Google Scholar
  43. Nilsson O, Moritz T, Sundberg B, Sandberg G, Olsson O (1996) Expression of the Agrobacterium rhizogenes rolC gene in a deciduous forest tree alters growth and development and leads to stem fasciation. Plant Physiol 112:493–502.PubMedGoogle Scholar
  44. Ohmiya Y, Nakai T, Park YW, Aoyama T, Oka A, Sakai F, Hayashi T (2003) The role of PopCel1 and PopCel2 in poplar leaf growth and cellulose biosynthesis. Plant J 33:1087–1097.PubMedCrossRefGoogle Scholar
  45. Oka M, Tasaka Y, Iwabuchi M, Mino M (2001) Elevated sensitivity to gibberellin by vernalization in the vegetative rosette plants of Eustoma grandiflorum and Arabidopsis thaliana. Plant Sci 160:1237–1245.PubMedCrossRefGoogle Scholar
  46. Olszewski N, Sun T-P, Gubler F (2002) Gibberellin signalling biosynthesis, catabolism, and response pathways. Plant Cell [Suppl 14]:S61–S80.PubMedGoogle Scholar
  47. Park YW, Tominaga R, Sugiyama J, Furuta Y, Tanimoto E, Samejima M, Sakai F, Hayashi T (2003) Enhancement of growth by expression of poplar cellulase in Arabidopsis thaliana. Plant J 33:1099–1106.PubMedCrossRefGoogle Scholar
  48. Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM (1996) Higher plants contain homologs of the bacterial CelA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA 93:12637–12642.PubMedCrossRefGoogle Scholar
  49. Perez-Flores L, Carrari F, Osuna-Fernandez R, Rodriguez MV, Enciso S, Stanelloni R, Sanchez RA, Bottini R, Iusem ND, Benech-Arnold RL (2003) Expression analysis of a GA 20-oxidase in embryos from two sorghum lines with contrasting dormancy: possible participation of this gene in the hormonal control of germination. J Exp Bot 54:2071–2079.PubMedCrossRefGoogle Scholar
  50. Piispanen R, Aronen T, Chen XW, Saranpaa P, Haggman H (2003) Silver birch (Betula pendula) plants with aux and rol genes show consistent changes in morphology, xylem structure and chemistry. Tree Physiol 23:721–733.PubMedGoogle Scholar
  51. Pilate G, Emma G, Holt K, Petit-Conil M, Lapierre C, Leplè JC, Pollet B, Mila I, Webster EA, Marstorp H, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu D, Halpin C (2002) Field and pulping performances of transgenic trees with altered lignification. Nature Biotechnol 20:607–612.CrossRefGoogle Scholar
  52. Puls J, Reisen M, Saake B (2003) Vergleichende Untersuchung zur Zusammensetzung der Zellwandkomponenten gentechnisch veränderter Aspen. In: Fladung M (ed) Holzbiologische, -chemische, -technologische und phytopathologische Untersuchungen an rolC-transgenen Hybridaspen (P. tremula L. ¥ P. tremuloides Michx.) aus einem Freisetzungsversuch. Mitteilungen der Bundesforschungsanstalt für Forst-und Holzwirtschaft. Kommissionsverlag Max Wiedebusch, Hamburg, pp 45–52.Google Scholar
  53. Ralph J, MacKay JJ, Hatfield RD, OMalley DM, Whetten RW, Sederoff RR (1997) Abnormal lignin in a loblolly pine mutant. Science 277:235–239.PubMedCrossRefGoogle Scholar
  54. Reiter WD, Chapple C, Somerville CR (1997) Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J 12:335–345.PubMedCrossRefGoogle Scholar
  55. Richmond TA, Somerville CR (2000) The cellulose synthase superfamily. Plant Physiol 124:495–498.PubMedCrossRefGoogle Scholar
  56. Somerville C (2004) Genetic engineering of cellulose accumulation. Available from URL:
  57. Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Towards a systems approach to understanding plant cell walls. Science 306:2206–2211.PubMedCrossRefGoogle Scholar
  58. Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99:9043–9048.PubMedCrossRefGoogle Scholar
  59. Strauss SH, DiFazio SP, Meilan R (2001) Genetically modified poplars in context. Forestry Chronicle 77:271–279.Google Scholar
  60. Sun T-P, Gubler F (2004) Molecular mechanism of gibberellin signalling in plants. Annu Rev Plant Biol 55:197–223.PubMedCrossRefGoogle Scholar
  61. Taylor G (2002) Populus. Arabidopsis for forestry. Do we need a model tree? Ann Bot 90:681–689.PubMedCrossRefGoogle Scholar
  62. Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA 100:1450–1455.PubMedCrossRefGoogle Scholar
  63. Tuominen H, Sitbon F, Jacobsson C, Sandberg G, Olsson O, Sundberg B (1995) Altered growth and wood characteristics in transgenic hybrid aspen expressing Agrobacterium tumefaciens T-DNA indoleacetic-acid biosynthetic genes. Plant Physiol 109:1179–1189.PubMedGoogle Scholar
  64. Turner SR, Somerville CR (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701.PubMedCrossRefGoogle Scholar
  65. Tzfira T, Vainstein A, Altman A (1999) rol-Gene expression in transgenic aspen (Populus tremula) plants results in accelerated growth and improved stem production index. Trees 14:49–54.Google Scholar
  66. Van Doorsselaere J, Baucher M, Chognot E, Chabbert B, Tollier MT, Petit Conil M, Leple JC, Pilate G, Cornu D, Monties B, Van Montagu M, Inze D, Boerjan W, Jouanin L (1995) A novel lignin in poplar trees with a reduced caffeic acid 5-hydroxyferulic acid O-methyltransferase activity. Plant J 8:855–864.Google Scholar
  67. Von Schwartzenberg K, Doumas P, Jouanin L, Pilate G (1994) Enhancement of the endogenous cytokinin concentration in poplar by transformation with Agrobacterium T-DNA gene ipt. Tree Physiol 14:27–35.Google Scholar
  68. Whetten RW, MacKay JJ, Sederoff RR (1998) Recent advances in understanding lignin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 49:585–609.PubMedCrossRefGoogle Scholar
  69. Wu LG, Joshi SP, Chiang VL (2000) A xylem-specific cellulose synthase gene from aspen (Populus tremuloides) is responsive to mechanical stress. Plant J 22:495–502.PubMedCrossRefGoogle Scholar
  70. Wullschleger S, Jansson S, Taylor G (2002). Genomics and forest biology -populus emerges as the perennial favorite. Plant Cell 14:2651–2655.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Matthias Fladung
    • 1
  1. 1.Bundesforschungsanstalt für Forst- und HolzwirtschaftInstitut für Forstgenetik und ForstpflanzenzüchtungGermany

Personalised recommendations