Genetically Modified Trees Expressing Genes for Insect Pest Resistance

  • Alma Balestrazzi
  • Gianni Allegro
  • Massimo Confalonieri


Insect Pest Bacillus Thuringiensis Genetically Modify Crop Gypsy Moth Transgenic Poplar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Phytopatological Society (2001) Genetically modified insect resistant corn: implications for disease management. Available at URL:
  2. Andow DA, Hutchison WD (1998) Bt-corn resistance management. In: Mellon M, Rissler J (eds) Now or never: serious new plans to save a natural pest control. Union Concerned Sci, Washington, DC, pp 19–66.Google Scholar
  3. Augustin S, Carré G, Courtin C, Dubois V, Génissel A, Lorme P, Wenes AL, Réjasse A, Pilate G, Leplé JC, Buorguet D (2004) Transgenic poplar and the poplar leaf beetle: state-of-the-art on the risk of evolution of insect resistance. FAO-IPC 22nd Session, Santiago, Chile, 29 Nov-2 Dec 2004.Google Scholar
  4. Bachelor JS (2000) Bollgard cotton performance expectations for North Carolina producers. Carolina Cotton News, North Carolina State University. Available at URL: http//–3d.htm.
  5. Balestrazzi A, Confalonieri M, Allegro G, Fogher C, Albertini A, Galizzi A, Cella R (1994) Regeneration of Populus nigra transgenic plants containing genes for insect pest resistance. Abstracts of the 8th international congress of plant tissue and cell culture, Florence (Italy), 12–17 June 1994.Google Scholar
  6. Bates SL, Zhao J-Z, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotech 23:57–62.CrossRefGoogle Scholar
  7. Brodway RM, Duffey SS (1986) The effect of dietary protein on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J Insect Physiol 32:827–833.CrossRefGoogle Scholar
  8. Burdon RD (1999) Risk-management issues for genetically modified forest trees. N Z J For Sci 29:375–390.Google Scholar
  9. Campbell MM, Brunner AM, Jones HM, Strauss SH (2003) Forestry’s fertile crescent: the application of biotechnology to forest trees. Plant Biotechnol J 1:141–154.PubMedCrossRefGoogle Scholar
  10. Confalonieri M, Allegro G, Delledonne M (1997) Transgenic black poplars expressing different soybean protease inhibitors genes. Abstracts of joint meeting of the IUFRO working parties “Somatic cell genetics and molecular genetics of trees”, Québec City, 12–16 Aug 1997, pp 04–07–04–06.Google Scholar
  11. Confalonieri M, Allegro G, Balestrazzi A, Fogher C, Delledonne M (1998) Regeneration of Populus nigra transgenic plants expressing a Kunitz proteinase inhibitor (KTi3) gene. Mol Breed 4:137–145.CrossRefGoogle Scholar
  12. Confalonieri M, Balestrazzi A, Bisoffi S, Carbonera D (2003) In vitro culture and genetic engineering of Populus spp.: synergy for forest tree improvement. Plant Cell Tissue Org Cult 72:109–138.CrossRefGoogle Scholar
  13. Cornu D, Leplè J-C, Bonadè-Bottino M, Ross A, Augustin S, Delplanque A, Jouanin L, Pilate G (1996) Expression of a proteinase inhibitor and a Bacillus thuringiensis endotoxin in transgenic poplars. In: Ahuja MR, Boerjan W, Neale DB (eds) Somatic cell genetics and molecular genetics of trees. Kluwer Academic Publ, Dordrecht, The Netherlands, pp 131–136.Google Scholar
  14. Dandekar AM, McGranahan GH, Vail PV, Uratsu SL, Leslie CA, Tebbets JS, Hoffman DJ (1994) Low levels of expression of cryIA(c) sequence of Bacillus thuringiensis in transgenic walnut. Plant Sci 96:151–162.CrossRefGoogle Scholar
  15. Dandekar AM, McGranahan GH, Vail PV, Uratsu SL, Leslie CA, Tebbets JS (1998) High levels of expression of full-length cryIA(c) gene from Bacillus thuringiensis in transgenic somatic walnut embryos. Plant Sci 131:181–193.CrossRefGoogle Scholar
  16. de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect word. Trends Genet 17:193–199.PubMedCrossRefGoogle Scholar
  17. Delledonne M, Belenghi B, Confalonieri M (1998) Genetic transformation of white poplar with different cysteine proteinase inhibitor genes. Abstracts of the Ixth international congress of plant tissue and cell culture, Jerusalem, 14–19 June 1998.Google Scholar
  18. Delledonne M, Allegro G, Belenghi B, Balestrazzi A, Picco F, Levine A, Zelasco S, Calligari P, Confalonieri M (2001) Transformation of white poplar (Populus alba L) with a novel Arabidopsis thaliana cysteine proteinase inhibitor gene and analysis of insect pest resistance. Mol Breed 7:35–42.CrossRefGoogle Scholar
  19. Dowd PF, Lagrimini LM, Herms DA (1998) Differential leaf resistance to insect of transgenic sweetgum (Liquidambar styraciflua) expressing tobacco anionic peroxidase. Cell Mol Life Sci 54:712–720.PubMedCrossRefGoogle Scholar
  20. Ellis DD, McCabe DE, McInnis S, Ramachandran R, Russel DR, Wallace KM, Martinell BJ, Roberts DR, Raffa KF, McCown BH (1993) Stable transformation of Picea glauca by particle acceleration. Biotechnology 11:84–89.CrossRefGoogle Scholar
  21. Ellis DD, Rintamaki-Strait J, Francis K, Kleiner K, Raffa K, McCown B (1996) Transgene expression in spruce and poplar: from the lab to the field. In: Ahuja MR, Boerjan W, Neale DB (eds) Somatic cell genetics and molecular genetics of trees. Kluwer Academic Publ, Dordrecht, The Netherlands, pp 159–163.Google Scholar
  22. FAO (2004) Preliminary review of biotechnology in forestry, including genetic modification. Forest genetic resources working paper FGR/59E. Forest Resources Development Service, Forest Resources Division. Rome, Italy (
  23. Felsot AS (2000) Insecticidal genes, part 2. Human health hoopla. Agric Environ News, Issue 168, 5 pp.Google Scholar
  24. Ferry N, Edwards MG, Gatehouse JA, Gatehouse AMR (2004) Plant-insect interactions: molecular approaches to insect resistance. Curr Opin Biotechnol 15:155–161.PubMedCrossRefGoogle Scholar
  25. Francis KE (1996) Genetic transformation and transgene analysis of hybrid poplar NM6 (P. nigra ¥ P. maximowiczii). Madison WI USA, Department of Horticulture, University of Wisconsin, MS Thesis.Google Scholar
  26. Gao J, Zhang F, Hou D, Wu B, Zhang S, Zhao X (2003) Structure of arthropod community in stands of transgenic hybrid poplar 741. J Beijing For Univ 25:62–64.Google Scholar
  27. Génissel A, Viard F, Bourguet D (2000) Population genetics of Chrysomela tremulae: a first step towards management of transgenic Bacillus thuringiensis poplars Populus tremula ¥ P. tremuloides. Hereditas 133:85–93.PubMedCrossRefGoogle Scholar
  28. Génissel A, Leplè J-C, Millet N, Augustin S, Jouanin L, Pilate G (2003) High tolerance against Chrysomela tremulae of transgenic poplar plants expressing a synthetic cry3Aa gene from Bacillus thuringiensis ssp. tenebrionis. Mol Breed 1:103–110.CrossRefGoogle Scholar
  29. Gill RIS, Ellis BE, Isman MB (2003) Tryptamine-induced resistance in tryptophan decarboxylase transgenic poplar and tobacco plants against their specific herbivores. J Chem Ecol 29:779–793.PubMedCrossRefGoogle Scholar
  30. Gomez-Lim MA, Litz RE (2004) Genetic transformation of perennial tropical fruits. In Vitro Cell Dev Biol Plant 40:442–449.CrossRefGoogle Scholar
  31. Gould F (2000) Testing Bt refuge strategies in the field. Nat Biotechnol 18:266–267.PubMedCrossRefGoogle Scholar
  32. Grace LJ, Charity JA, Gresham B, Kay N, Walter C (2005) Insect-resistant transgenic Pinus radiata. Plant Cell Rep 24:103–111.PubMedCrossRefGoogle Scholar
  33. Halpin C (2005) Gene stacking in transgenic plant-the challenge for 21st century plant biotechnology. Plant Biotech J 3:141–155.CrossRefGoogle Scholar
  34. Haq SK, Atif SM, Khan RH (2004) Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch Biochem Biophys 431:145–159.PubMedCrossRefGoogle Scholar
  35. Harcourt RL, Kyozuka J, Floyd RB, Bateman KS, Tanaka H, Decroocq V, Llewellyn DJ, Zhu X, Peacock WJ, Dennis ES (2000) Insect- and herbicide-resistant transgenic eucalypts. Mol Breed 6:307–315.CrossRefGoogle Scholar
  36. Heitz T, Geoffroy P, Fritig B, Legrand M (1999) The PR-6 family: proteinase inhibitors in plant-microbe and plant-insect interactions. In: Datta SK, Muthukrishan S (eds) Pathogenesis-related proteins in plants. CRC Press, Boca Raton, FL, pp 131–155.Google Scholar
  37. Heuchelin SA, Jouanin L, Klopfenstein NB, McNabb HS (1997) Potential of proteinase inhibitors for enhanced resistance to Populus arthropod and pathogen pests. In: Klopfenstein NB, Chun YW, Kim MS, Ahuia MR (eds) Micropropagation, genetic engineering, and molecular biology of Populus. Gen tech Rep RM-GRT–297, USDA, Fort Collins, CO, pp 173–177.Google Scholar
  38. Hilbeck A, Baumgartner M, Freid PM, Bigler F (1998) Effects of Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea. Environ Entomol 27:480–487.Google Scholar
  39. Hodgson J (1999) Monarch Bt corn paper questioned. Nat Biotechnol 17:627.PubMedCrossRefGoogle Scholar
  40. Hu JJ, Tian YC, Han YF, Li L, Zhang BE (2001) Field evaluation of insect-resistant transgenic Populus nigra trees. Euphytica 121:123–127.CrossRefGoogle Scholar
  41. James DJ, Passey AJ, Webster AD, Barbara DJ, Viss P, Dandekar AM, Uratsu SL (1993) Transgenic apples and strawberries: advances in transformation, introduction of genes for insect resistance and field studies of tissue cultured plants. Acta Horticult 336:179–184.Google Scholar
  42. James RR (1997) Utilizing a social ethic toward the environment in assessing genetically engineered insect resistance in trees. Agr Hun Values 14:237–249.CrossRefGoogle Scholar
  43. Jongsma MA, Stiekema WJ, Bosch D (1996) Combatting inhibitor-insensitive proteases of insect pests. TIBTECH 14:331–333.Google Scholar
  44. Kang H, Hall RB, Heuchelin SA, McNabb HS, Mize CW, Hart ER (1997) Transgenic Populus: in vitro screening for resistance to cottonwood leaf beetle (Coleoptera: Chrysomelidae). Can J For Res 27:943–944.CrossRefGoogle Scholar
  45. Kleiner KW, Ellis DD, McCown BH and Raffa KF (1995) Field evaluation of transgenic poplar expressing a Bacillus thuringiensis cryIA(a) endotoxin gene against forest tent caterpillar and gypsy moth following winter dormancy. Environ Entomol 24:1358–1364.Google Scholar
  46. Klopfenstein NB, McNabb HS, Hart EL, Hall RB, Hanna RD, Heuchelin SA, Allen KK, Shi N-Q, Thornburg RW (1993) Transformation of Populus hybrids to study and improve pest resistance. Silvae Genet 42:86–90.Google Scholar
  47. Knowles BH, Dow JAT (1993) The crystal delta-endotoxins of Bacillus thuringiensis-models for their mechanism of action on the insect gut. BioEssays 15:469–476.CrossRefGoogle Scholar
  48. Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends Plant Sci 2:379–384.CrossRefGoogle Scholar
  49. Krattiger AF (1996) Insect resistance in crops: a case study of Bacillus thguringiensis (Bt) and its transfer to developing countries. ISAAA Briefs no 2. ISAAA, Ithaca, NY, 42 pp.Google Scholar
  50. Leplé JC, Bonadé Bottino M, Augustin S, Pilate G, Dumanois Le Tan V, Delplanque A, Cornu D, Jouanin L (1995) Toxicity to Chrysomela tremulae (Coleoptera: Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Mol Breed 1:319–328.CrossRefGoogle Scholar
  51. Leplé JC, Pilate G, Jouanin L (1999) Transgenic Poplar Trees (Populus Species). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 44. Transgenic trees. Springer, Berlin Heidelberg New York, pp 215–244.Google Scholar
  52. Losey J, Raynor L, Carter ME (1999) Transgenic pollen harms monarch larvae. Nature 399:214.PubMedCrossRefGoogle Scholar
  53. Lövei GL, Arpaia S (2005) The impact of transgenic plants on natural enemies: a critical review of laboratory studies. Ent Exp Appl 114:1–14.CrossRefGoogle Scholar
  54. Markwick NP, Christeller JT, Docherty LC, Lilley CM (2001) Insecticidal activity of avidin and streptavidin against four species of pest Lepidoptera. Entomol Exp Appl 98:59–66.CrossRefGoogle Scholar
  55. Markwick NP, Docherty LC, Phung MM, Lester MT, Murray C, Yao J-L, Mitra DS, Cohen D, Beuning LL, Kutty-Amma S, Christeller JT (2003) Transgenic tobacco and apple plants expressing biotin-binding proteins are resistant to two cosmopolitan insect pests, potato tuber and lightbrown apple moth, respectively. Transgenic Res 12:671–681.PubMedCrossRefGoogle Scholar
  56. McCaffrey AR (1998) Resistance to insecticides in heliothine Lepidoptera: a global view. Philos Trans R Soc Lond B353:1735–1750.CrossRefGoogle Scholar
  57. McCown BH, McCabe DE, Russel DR, Robison DJ, Barton KA, Raffa KF (1991) Stable transformation of Populus and incorporation of pest resistance by electrical discharge particle acceleration. Plant Cell Rep 9:590–594.CrossRefGoogle Scholar
  58. Meilan R, Ma C, Cheng S, Eaton JA, Miller LK, Crockett RP, DiFazio SP, Strauss SH (2000) High levels of Roundup® and leaf-beetle resistance in genetically engineered hybrid cottonwoods. In: Blatner KA, Johnson JJ (eds) Hybrid poplars in the pacific northwest: culture, commerce and capability. Washington State University Cooperative Extension, Pullman, WA, pp 29–38.Google Scholar
  59. Pappinen A, Keinonen-Mettala K, Susi A, Lemmetyinen J, von Weissenberg K (1995) Association of chitinases and protease inhibitors in resistance to diseases and insects in birch. Abstracts of the IUFRO XXth world congress, Tampere, 6–12 Aug 1995.Google Scholar
  60. Pittendrigh BR, Gaffney PJ, Huesing JE, Onstad DW, Roush RT, Murdock LL (2004) “Active” refuges can inhibit the evolution of resistance in insects towards transgenic insect-resistant plants. J Theor Biol 231:461–474.PubMedCrossRefGoogle Scholar
  61. Pretty J (2001) The rapid emergence of genetic modification in world agriculture: contested risks and benefits. Environ Conserv 28(3):248–262.Google Scholar
  62. Raffa KF (1989) Genetic engineering of trees to enhance resistance to insects: evaluating the risk of biotype evolution and secondary pest outbreak. BioSci 39:524–534.CrossRefGoogle Scholar
  63. Raffa KF, Kleiner KW, Ellis DD, McCown BH (1997) Environmental risk assessment and deployment strategies for genetically engineered insect-resistant Populus. In: Klopfenstein NB, Chun YW, Kim MS, Ahuia MR (eds) Micropropagation, genetic engineering, and molecular biology of Populus. Gen Tech Rep RM-GRT-297. USDA, Fort Collins CO, pp 249–263.Google Scholar
  64. Rautner M (2001) Designer trees. Biotechnol Dev Monitor 44/45:2–7.Google Scholar
  65. Robison DJ, McCown BH, Raffa KF (1994) Responses of gypsy moth and forest tent caterpillar to transgenic poplar containing a Bacillus thuringiensis d-endotoxin gene. Environ Entomol 23:1030–1041.Google Scholar
  66. Romanò B, Rodolfi M, Sala F, Basso B (2004) Defending apple rootstock against the cockchafer Melolontha melolontha L. Proceedings of the XLVIIIth Italian Society of Agricultural Genetics-SIFV-SIGA Joint Meeting, Lecce, 15–18 Sep 2004.Google Scholar
  67. Ryan CA (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425–449.CrossRefGoogle Scholar
  68. Saxena D, Stotzsky G (2001) Fate and effects of the insecticidal toxins from Bacillus thuringiensis in soils. Inf Sys Biotechnol News Rep, May 2001.Google Scholar
  69. Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect-resistant transgenic plants. TIBTECH 16:168–175.Google Scholar
  70. Schuler TH, Poppy GM, Kerry BR, Denholm I (1999) Potential side effects of insect-resistant transgenic plants on arthropod natural enemies. TIBTECH 17:210–216.Google Scholar
  71. Shelton AM (2004) Risks and benefits of agricultural biotechnology. In: Ahmed F (ed) Testing of genetically modified organisms in food. Haworth Press, Binghamton NY, pp 1–53.Google Scholar
  72. Shelton AM, Zhao J-Z, Roush RT (2002) Economic, ecological, food safety and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881.PubMedCrossRefGoogle Scholar
  73. Shin DI, Podila GK, Huang Y, Karnosky DF (1994) Transgenic larch expressing genes for herbicide and insect resistance. Can J For Res 24:2059–2067.CrossRefGoogle Scholar
  74. Singer MC, Parmesan C (1993) Sources of variation in patterns of plant-insect interactions association. Nature 361:251–253.CrossRefGoogle Scholar
  75. Speight MR, Wainhouse D (1989) Ecology and management of forest insects. Clarendon Press, Oxford.Google Scholar
  76. Tang W, Newton RJ (2003) Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Rep 22:1–15.PubMedCrossRefGoogle Scholar
  77. Tang W, Tian Y (2003) Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified d-enotoxin gene of Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud. J Exp Bot 54:835–844.PubMedCrossRefGoogle Scholar
  78. Taylor G (2002) Populus: Arabidopsis for forestry. Do we need a model tree? Ann Bot 90:681–689.PubMedCrossRefGoogle Scholar
  79. Tian YC, Li TY, Mang KQ, Han YF, Li L (1993) Insect tolerance of transgenic Populus nigra plants transformed with Bacillus thuringiensis toxin gene. Chin J Biotech 9:219–227.Google Scholar
  80. US EPA, Off Pestic Programs, Biopesticide Pollut Prev Div (2000) Biopesticides registration document; preliminary risks and benefits sections; Bacillus thuringiensis plant pesticides. US EPA, Washington, DC.Google Scholar
  81. Vacher C, Bourguet D, Rousset F, Chevillon C, Hochberg ME (2003) Modelling the spatial configuration of refuges for a sustainable control of pests: a case study of Bt cotton. J Evol Biol 16:378–387.PubMedCrossRefGoogle Scholar
  82. Vettori C, Paffetti D, Stotzsky G, Giannini R (2003) Genetic exchange between Bacillus thuringiensis subsp. kurstaki and the indigenous microbiota in soils of Sardinia. “Tree Biotechnology 2003” IUFRO meeting, 7–12 June 2003, Umeå, Sweden.Google Scholar
  83. Walter C, Carson SD, Menzies MI, Richardson T, Carson M (1998) Review: application of biotechnology to forestry-molecular biology of conifers. World J Microbiol Biotech 14:321–330.CrossRefGoogle Scholar
  84. Wang GJ, Castiglione S, Chen Y, Li L, Han YF, Tian YC, Dean WG, Han YN, Mang KQ, Sala F (1996) Poplar (Populus nigra L.) plants transformed with a Bacillus thuringiensis toxin gene: insecticidal activity and genomic analysis. Trans Res 5:289–301.CrossRefGoogle Scholar
  85. Wang J, Constabel CP (2004) Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta 220:87–96.PubMedCrossRefGoogle Scholar
  86. World Health Organization (2000) Safety aspects of genetically modified foods of plant origin. Rep joint FAO/WHO expert consulation on foods derived from biotechnology, 29 May–2 June 2000.Google Scholar
  87. Wu NF, Sun Q, Yao B, Fan YL, Rao HY, Huang MR, Wang MX (2000) Insect-resistant transgenic poplar expressing AaIT gene. Sheng Wu Gong Cheng Xue Bao 16:129–133.PubMedGoogle Scholar
  88. Yang ZN, Ingelbrecht IL, Louzada E, Skaria M, Mirkov TE (2000) Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio red (Citrus paradisi Macf.). Plant Cell Rep 19:1203–1211.CrossRefGoogle Scholar
  89. Zheng J, Liang H, Gao B, Wang Y, Tian Y (2000) Selection and insect resistance of transgenic hybrid poplar 741 carrying two insect-resistant genes. Sci Silv Sin 36:13–20.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Alma Balestrazzi
    • 1
  • Gianni Allegro
    • 2
  • Massimo Confalonieri
    • 3
  1. 1.Department of Genetics and MicrobiologyUniversity of PaviaItaly
  2. 2.Poplar Research Institute – C.R.A.Italy
  3. 3.Experimental Institute of Fodder Crops – C.R.A.Italy

Personalised recommendations