Fungal and Bacterial Resistance in Transgenic Trees

  • William A. Powell
  • Charles A. Maynard
  • Brian Boyle
  • Armand SéGuin

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboudy Y, Mendelson E, Shalit I, Bessalle R, Fridkin M (1994) Activity of two synthetic amphiphilic peptides and magainin-2 against herpes simplex virus types 1 and 2. Intern J Peptide Protein Res 43:573–582.Google Scholar
  2. Alfano JR, Collmer A (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42:385–414.PubMedCrossRefGoogle Scholar
  3. Ballweber LM, Jaynes JE, Stamm WE, Lampe MF (2002) In vitro microbicidal activities of cecropin peptides D2A21 and D4E1 and gel formulations containing 0.1 to 2% D2A21 against Chlamydia trachomatis. Antimicrob Agents Chemother 46:34–41.PubMedCrossRefGoogle Scholar
  4. Bechinger B (1997) Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J Membrane Biol 156:197–211.CrossRefGoogle Scholar
  5. Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from wild apple confers scab resistance to transgenic cultivated variety. Proc Natl Acad Sci USA 101:886–890.PubMedCrossRefGoogle Scholar
  6. Bolar JP, Norelli JL, Wong KW, Hayes CK, Harman GE, Aldwinckle HB (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90:72–77.PubMedCrossRefGoogle Scholar
  7. Bolar JP, Norelli JL, Harman GE, Brown SK, Aldwinckle H.S (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res 10:533–543.PubMedCrossRefGoogle Scholar
  8. Bondt AD, Zaman S, Broekaert W, Cammune B, Keulemans J (1998) Genetic transformation of apple (Malus Pumila mill.) for increased fungal resistance: in vitro antifungal activity in protein extracts of transgenic apple expressing RS-AFP2 or ACE-AMP1. Acta Horticult 484:565–570.Google Scholar
  9. Boyle B, Hamelin RC, Seguin A (2005) In vivo monitoring of obligate biotrophic pathogen growth by kinetic PCR. Appl Environ Microbiol 71:1546–1552.PubMedCrossRefGoogle Scholar
  10. Broekaert WF, Marien W, Terras FRG, Bolle MFCd, Proost P, von Damme J, Dillen L, Claeys M, Rees SB, Vanderleyden J (1992) Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochem 31:4308–4314.CrossRefGoogle Scholar
  11. Broekaert WF, Cammue BPA, DeBolle MFC, Thevissen K, DeSamblanx GW, Osborn RW (1997) Antimicrobial peptides from plants. Crit Rev Plant Sci 16:297–323.CrossRefGoogle Scholar
  12. Brunings AM, Gabriel DW (2003) Xanthomonas citri: breaking the surface. Mol Plant Pathol 4:141–157.CrossRefGoogle Scholar
  13. Bulet P, Stocklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184.PubMedCrossRefGoogle Scholar
  14. Carlsson A, Engstrom P, Palva ET, Bennich H (1991) Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infect Immun 59:3040–3045.PubMedGoogle Scholar
  15. Carlsson A, Nystrom T, de Cock H, Bennich H (1998) Attacin–an insect immune protein-binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis. Microbiol 144:2179–2188.CrossRefGoogle Scholar
  16. Carrington JC, Cary SM, Dougherty WG (1988) Mutational analysis of tobacco etch virus polyprotein processing: cis and trans proteolytic activities of polyproteins containing the 49-kilodalton proteinase. J Virol 62:2313–2320.PubMedGoogle Scholar
  17. Ceriani MF, Marcos JF, Hopp HE, Beachy RN (1998) Simultaneous accumulation of multiple viral coat protein from a TEV-NIa based expression vector. Plant Mol Biol 36:239–248.PubMedCrossRefGoogle Scholar
  18. Chareonpornwattana S, Thara KV, Wang L, Datta SK, Panbangred W, Muthukrishnan S (1999) Inheritance, expression, and silencing of a chitinase transgene in rice. Theor Appl Genet 98:371–378.CrossRefGoogle Scholar
  19. Clarke HRG, Davis JM, Wilbert SM, Bradshaw HD, Gordon MP Jr (1994) Wound-induced and developmental activation of a poplar tree chitinase gene promoter in transgenic tobacco. Plant Mol Biol 25:799–815.PubMedCrossRefGoogle Scholar
  20. Connors BJ, Miller M, Maynard CA, Powell WA (2002) Cloning and characterization of promoters from American chestnut capable of directing reporter gene expression in transgenic Arabidopsis plants. Plant Sci 163:771–781.CrossRefGoogle Scholar
  21. Dasgupta S, Collins GB, Hunt AG (1998) Co-ordinated expression of multiple enzymes in different subcellular compartments in plants. Plant J 16:107–116.PubMedCrossRefGoogle Scholar
  22. Doering DS (2001) Will the marketplace see the sustainable forest for the transgenic trees? In: Strauss SH, Bradshaw HD (eds) Proceedings of the first international symposium on ecological and societal aspects of transgenic plantations, Avalable at URL (www.fsl.orst.edu/tgerc/iufro2001/eprocd.pdf) pp 70–81.
  23. Duan Y-P, Castaneda A, Zhao G, Erdos G, Gabriel D-W (1999) Expression of a single, host-specific, bacterial pathogenicity gene in plant cells elicits division, enlargement, and cell death. Mol Plant Microbe Interact 12:556–560.CrossRefGoogle Scholar
  24. Dumas BG, Freyssinet KE, Pallett (1995) Tissue-specific expression of germin-like oxalate oxidase during development and fungal infection of barley seedlings. Plant Physiol 107:1091–1096.PubMedGoogle Scholar
  25. During K (1996) Genetic engineering for resistance to bacteria in transgenic plants by introduction of foreign genes. Mol Breed 2:297–305.CrossRefGoogle Scholar
  26. During K, Porsch P, Mahn A, Brinkmann O, Gieffers W (1999) The non-enzymatic microbicidal activity of lysozymes. FEBS Lett 449:93–100.PubMedCrossRefGoogle Scholar
  27. Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4:457–467.PubMedCrossRefGoogle Scholar
  28. Engstrom, P, Carlsson A, Engstrom A, Tao Z, Bennich H (1984) The antibacterial effect of attacins from the silk moth Hyalophora cecropia is directed against the outer membrane of Escherichia coli. EMBO J 3:3347–3351.PubMedGoogle Scholar
  29. Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8:380–386.PubMedCrossRefGoogle Scholar
  30. Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM (2001) RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci USA 98:13437–13442.PubMedCrossRefGoogle Scholar
  31. Escobar MA, Leslie CA, McGranahan GH, Dandekar AM (2002) Silencing crown gall disease in walnut (Juglans regia L.). Plant Sci 163:591–597.CrossRefGoogle Scholar
  32. Escobar MA, Civerolo EL, Polito VS, Pinney KA, Dandekar AM (2003) Characterization of oncogene-silenced transgenic plants: implications for Agrobacterium biology and post-transcriptional gene silencing. Mol Plant Pathol 4:57–65.CrossRefGoogle Scholar
  33. Faize M, Malnoy M, Dupuis F, Chevalier M, Parisi L, Chevreau E (2003) Chitinases of Trichoderma atroviride induce scab resistance and some metabolic changes in two cultivars of apple. Phytopathol 93:1496–1504.CrossRefGoogle Scholar
  34. Faize M, Sourice S, Dubpuis F, Parisi L, Gautier MF, Chevreau E (2004) Expression of wheat puroindoline-b reduces scab susceptibility in transgenic apple (Malus ¥ domestica Borkh.). Plant Sci 167:347–354.CrossRefGoogle Scholar
  35. Garcia-Perez RD, Houdt HV, Depicker A (2004) Spreading of post-transcriptional gene silencing along the target gene promotes systemic silencing. Plant J 38:594–602.PubMedCrossRefGoogle Scholar
  36. Gartland JS, Brasier CM, Fenning TM, Birch R Gartland KMA (2001) Ri-plasmid mediated transformation and regeneration of Ulmus procera (English Elm). Plant Growth Regul 33:123–129.CrossRefGoogle Scholar
  37. Gauthier A, Thomas NA, Finlay BB (2003) Bacterial injection machines. J Biol Chem 278:25273–25276.PubMedCrossRefGoogle Scholar
  38. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37.PubMedCrossRefGoogle Scholar
  39. Giacometti A, Cirioni O, Greganti G, Quarta M, Scalise G (1998) In vitro activities of membrane-active peptides against Gram-positive and Gram-negative aerobic bacteria. Antimicrob Agents Chemother 42:3320–3324.PubMedGoogle Scholar
  40. Giorcelli A, Sparvoli F, Mattivi F, Tava A, Balestrazzi A, Vrhovsek U, Calligari P, Bollini R, Confalonieri M (2004) Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant compounds resveratrol glucosides. Transgenic Res 13:203–214.PubMedCrossRefGoogle Scholar
  41. Gray-Mitsumune M, Molitor EK, Cukovic D, Carlson JE, Douglas CJ (1999) Developmentally regulated patterns of expression directed by poplar PAL promoters in transgenic tobacco and poplar. Plant Mol Biol 39:657–669.PubMedCrossRefGoogle Scholar
  42. Grover A, Gowthaman R (2003) Strategies for development of fungus-resistant transgenic plants. Curr Sci 84:330–340.Google Scholar
  43. Halpin C, Barakate A, Askari BM, Abbott JC, Ryan MD (2001) Enabling technologies for manipulating multiple genes on complex pathways. Plant Mol Biol 47:295–310.PubMedCrossRefGoogle Scholar
  44. Hancock REW, Diamond G (2000) The role of cationic antimicrobial peptides in innate host defenses. Trends Microbiol 8:402–410.PubMedCrossRefGoogle Scholar
  45. Hipskind JD, Paiva NL (2000) Constitutive accumulation of resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol Plant Microbe Interact 5:551–562.CrossRefGoogle Scholar
  46. Hollick JB, Gordon MP (1993) A poplar tree proteinase inhibitor-like gene promoter is responsive to wounding in transgenic tobacco. Plant Mol Biol 22:561–572.PubMedCrossRefGoogle Scholar
  47. Hollick JB, Gordon MP (1995) Transgenic analysis of a hybrid poplar wound-inducible promoter reveals developmental patterns of expression similar to that of storage protein genes. Plant Physiol 109:73–85.PubMedCrossRefGoogle Scholar
  48. Kadono-Okuda K, Taniai K, Kotani YKE, Yamakawa M (1995) Effects of synthetic Bombyx mori Cecropin B on the growth of plant pathogenic bacteria. J Invertebrate Pathol 65:309–310.CrossRefGoogle Scholar
  49. Ko K, Norelli JL, Reynoird J-P, Boresjza-Wysocka E, Brown SK, Aldwinckle HS (2000) Effect of untranslated leader sequence of AMV RNA 4 and signal peptide of pathogenesis-related protein 1b on attacin gene expression, and resistance to fire blight in transgenic apple. BiotechnolLett 22:373–381.Google Scholar
  50. Ko K, Norelli JL, Reynoird JP, Aldwinckle HS, Brown SK (2002) T4 lysozyme and attacin genes enhance resistance of transgenic ‘Galaxy’ apple against Erwinia amylovora. J Am Soc Horticult Sci 127:515–519.Google Scholar
  51. Laigeng L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci USA 100:4939–4964.CrossRefGoogle Scholar
  52. Lane BG (1994) Oxalate, germin, and the extracellular matrix of higher plants. FASEB J 8:294–301.PubMedGoogle Scholar
  53. Lane BG, Grzelczak ZF, Kennedy TD, Kajioka R, Orr J, D’Agostino S, Jaikaran A (1986) Germin: compartmentation of two forms of the protein by washing growing wheat embryos. Biochem Cell Biol 64:1025–1037.CrossRefGoogle Scholar
  54. Lane BG, Dunwell JM, Ray JA, Schmitt MR, Cuming AC (1993) Germin, a protein marker of early plant development, is an oxalate oxidase. J Biol Chem 268:12239–12242.PubMedGoogle Scholar
  55. Le Gall F, Bove J-M, Garnier M (1998) Engineering of a single-chain variable-fragment (scFv) antibody specific for the Stolbur phytoplasma (Mollicute) and its expression in Escherichia coli and tobacco plants. Appl Environ Microbiol 64:4566–4572.PubMedGoogle Scholar
  56. Lee H, Humann JL, Pitrak JS, Cuperus JT, Parks TD, Whistler CA, Mok MC, Ream LW (2003) Translation start sequences affect the efficiency of silencing of Agrobacterium tumefaciens T-DNA oncogenes. Plant Physiol 133:966–977.PubMedCrossRefGoogle Scholar
  57. Liang H, Maynard CA, Allen RD Powell WA (2001) Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Mol Biol 45:619–629.PubMedCrossRefGoogle Scholar
  58. Liang H, Catranis CM, Maynard CA, Powell WA (2002) Enhanced resistance to the poplar fungal pathogen, Septoria musiva, in hybrid poplar clones transformed with genes encoding antimicrobial peptides. Biotechnol Lett 24:383–389.CrossRefGoogle Scholar
  59. Liang H, Gao H, Maynard CA, Powell WA (2005) Expression of a self-processing, pathogen resistance-enhancing gene construct in Arabidopsis. Biotechnol Lett 27:435–442.PubMedCrossRefGoogle Scholar
  60. Lorito M, Woo SL, Garcia Fernandez I, Colucci G, Harman GE, Pintor-Toro JA, Filippone E, Muccifora S, Lawrence CB, Zoina A (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95:7860–7865.PubMedCrossRefGoogle Scholar
  61. Mason HS, DeWald DB, Mullet JE (1993) Identification of a methyl jasmonate-responsive domain in the soybean vspB promoter. Plant Cell 5:241–251.PubMedCrossRefGoogle Scholar
  62. Mentag R, Luckevich M, Morency M-J, Séguin A (2003) Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiol 23:405–411.PubMedGoogle Scholar
  63. Mohamed R, Meilan R, Ostry ME, Michler CH, Strauss SH (2001) Bacterio-opsin gene overexpression fails to elevate fungal disease resistance in transgenic poplar (Populus). Can J For Res 31:268–275.CrossRefGoogle Scholar
  64. Noël A, Levasseur C, Le VQ, Séguin A (2005) Enhanced resistance to fungal pathogens in forest trees by genetic transformation of black spruce and hybrid poplar with a Trichoderma harzianum endochitinase gene. Physiol Mol Plant Pathol 67:92–99.CrossRefGoogle Scholar
  65. Norelli J-L, Aldwinckle H-S, Destefano-Beltran L, Jaynes J-M (1994) Transgenic “Malling 26” apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphytica 77:123–128.CrossRefGoogle Scholar
  66. Norelli JL, Mills JZ, Momol MT, Aldwinckle HS (1998) Effect of cecropin-like transgenes on fire blight resistance of apple. Acta Horticult 489:273–278.Google Scholar
  67. Olson PD, JE Varner (1993) Hydrogen peroxide and lignification. Plant J 4:887–892.CrossRefGoogle Scholar
  68. Palauqui J-C, Elmayan T, Pollien J-M, Vaucheret H (1997) Systemic acquired silencing: Transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J 16:4738–4745.PubMedCrossRefGoogle Scholar
  69. Pappinen A, Degefu Y, Syrjala L, Keinonen K, v Weissenberg K (2002) Transgenic silver birch (Betula pendula) expressing sugarbeet chitinase 4 shows enhanced resistance to Pyrenopeziza betulicola. Plant Cell Rep 20:1046–1051.CrossRefGoogle Scholar
  70. Park SH, Lee BM, Salas MG, Srivatanakul M, Smith RH (2000) Shorter T-DNA or additional virulence genes improve Agrobactrium-mediated transformation. Theor Appl Genet 101:1015–1020.CrossRefGoogle Scholar
  71. Park YD, Papp I, Moscone EA, Iglesias VA, Vaucheret H, Matzke sAJM, Matzke MA (1996) Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J 9:183–194.PubMedCrossRefGoogle Scholar
  72. Pasonen HL, Seppanen SK, Degefu Y, Rytkonen A, v Weissenberg K, Pappinen A (2004) Field performance of chitinase transgenic silver birches (Betula pendula): resistance to fungal diseases. Theor Appl Genet 109:562–570.PubMedCrossRefGoogle Scholar
  73. Pervieux I, Bourassa M, Laurans F, Hamelin R, Seguin A (2004) A spruce defensin showing strong antifungal activity and increased transcript accumulation after wounding and jasmonate treatments. Physiol Mol Plant Pathol 64:331–341.CrossRefGoogle Scholar
  74. Polin LD, Liang H, Rothrock RE, Nishii M, Diehl DL, Newhouse AE, Nairn CJ, Powell WA, Maynard CA (2005) Transformation of American chestnut (Castanea dentata (Marsh.) Borkh.) somatic embryos. In Vitro Cell Dev Biol Plant (in press).Google Scholar
  75. Poteete A-R, Hardy L-W (1994) Genetic analysis of bacteriophage T4 lysozyme structure and function. J Bacteriol 176:6783–6788.PubMedGoogle Scholar
  76. Powell WA, Maynard CA (1997) Designing small antimicrobial peptides and their encoding genes. Micropropagation, genetic engineering, molecular biology of Populus. Gen Tech Rep RM-GTR-297 USDA Forest Service, pp 165–172.Google Scholar
  77. Powell WA, Catranis CM, Maynard CA (1995) Synthetic antimicrobial peptide design. Mol Plant Microbe Interact 8:792–794.PubMedGoogle Scholar
  78. Powell WA, Catranis CM, Maynard CA (2000) Design of self-processing antimicrobial peptides for plant protection. Lett Appl Microbiol 31:163–168.PubMedCrossRefGoogle Scholar
  79. Rajasekaran K, Stromberg KD, Cary JW, Cleveland TE (2001) Broad-spectrum antimicrobial activity in vitro of the synthetic peptide D4E1. J Agricult Food Chem 49:2799–2803.CrossRefGoogle Scholar
  80. Ream LW, Gordon MP, Nester EW (1983) Multiple mutations in the T region of the Agrobacterium tumefaciens tumor-inducing plasmid. Proc Natl Acad Sci USA 80:1660–1664.PubMedCrossRefGoogle Scholar
  81. Reed WA, Elzer PH, Enright FM, Jaynes JM, Morrey JD, White KL (1997) Interleukin 2 promoter/enhancer controlled expression of a synthetic cecropin-class lytic peptide in transgenic mice and subsequent resistance to Brucella abortus. Transgenic Res 6:337–347.PubMedCrossRefGoogle Scholar
  82. Reynoird JP, Mourgues F, Norelli J, Aldwinckle HS, Brisset MN, Chevreau E (1999) First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia. Plant Sci 149:23–31.CrossRefGoogle Scholar
  83. Sadka A, DeWald DB, May GD, Park WD, Mullet JE (1994) Phosphate modulates transcription of soybean VspB and other sugar-inducible genes. Plant Cell 6:737–749.PubMedCrossRefGoogle Scholar
  84. Schubert TS, Rizvi SA, Sun X, Gottwald TR, Graham JH, Dixon WN (2001) Meeting the challenge of eradicating citrus canker in Florida-again. Plant Disease 85:340–356.CrossRefGoogle Scholar
  85. Schwab U, Gilligan P, Jaynes J, Henke D (1999) In vitro activities of designed antimicrobial peptides against multidrug-resistant cystic fibrosis pathogens. Antimicrob Agents Chemother 43:1435–1440.PubMedGoogle Scholar
  86. Skuzeski JM, Nichols LM, Gesteland RF (1990) Analysis of leaky viral translation termination codons in vivo by transient expression of improved beta-glucuronidase vectors. Plant Mol Biol 15:65–79.PubMedCrossRefGoogle Scholar
  87. Skuzeski JM, Nichols LM, Gesteland RF, Atkins JF (1991) The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons. J Mol Biol 218:365–373.PubMedCrossRefGoogle Scholar
  88. Sonoda S, Nishiguchi M (2000) Graft transmission of post-transcriptional gene silencing: target specificity for RNA degradation is transmissible between silenced and non-silenced plants, but not between silenced plants. Plant J 21:1–8.PubMedCrossRefGoogle Scholar
  89. Strom L, Owen AG, Godbold DL, Jones DL (2002) Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots. Soil Biol Biochem 34:703–710.CrossRefGoogle Scholar
  90. Suarez M, Entenza JM, Doerries C, Meyer E, Bourquin L, Sutherland J, Marison I, Moreillon P, Mermod N (2003) Expression of a plant-derived peptide harboring water-cleaning and antimicrobial activities. Biotechnol Bioeng 81:13–20.PubMedCrossRefGoogle Scholar
  91. Thierry D, Vaucheret H (1996) Sequence homology requirements for transcriptional silencing of 35S transgenes and post-transcriptional silencing of nitrite reductase (trans) genes by the tobacco 271 locus. Plant Mol Biol 32:1075–1083.PubMedCrossRefGoogle Scholar
  92. Thordal-Christensen H, Zhang Z, Wei YD, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194.CrossRefGoogle Scholar
  93. Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, ß-helical antimicrobial peptides. Biopolymers 55:4–30.PubMedCrossRefGoogle Scholar
  94. Viss WJ, Pitrak J, Humann J, Cook M, Driver J, Ream W (2003) Crown-gall-resistant transgenic apple trees that silence Agrobacterium tumefaciens oncogenes. Mol Breed 12:283–295.CrossRefGoogle Scholar
  95. Voinnet O (2002) RNA silencing: small RNAs as ubiquitous regulators of gene expression. Curr Opin Plant Biol 5:444–451.PubMedCrossRefGoogle Scholar
  96. Voinnet O, Vain P, Angell S, Baulcombe DC (1998) Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95:177–187.PubMedCrossRefGoogle Scholar
  97. Von Bodman SB, Domier LL, Farrand SK (1995) Expression of multiple eukaryotic genes from a single promoter in Nicotiana. Biotechnology 13:587–591.CrossRefGoogle Scholar
  98. Weiland JE, Stanosz JC, Stanosz GR (2003) Prediction of long-term canker disease damage from the responses of juvenile poplar clones to inoculation with Septoria musiva. Plant Disease 87:1507–1514.CrossRefGoogle Scholar
  99. Wong KW, Harman GE, Norelli JL, Gustafson HL, Aldwinckle HS (1998) Chitinase-transgenic lines of ‘Royal Gala’ apple showing enhanced resistance to apple scab. Acta Horticult 484:595–599.Google Scholar
  100. Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K, Hibi T, Hayashi T, Matsuta N (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19:639–646.CrossRefGoogle Scholar
  101. Yang Y, Gabriel D-W (1995) Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. Mol Plant Microbe Interact 8:627–631.PubMedGoogle Scholar
  102. Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453.PubMedCrossRefGoogle Scholar
  103. Ziegler A, Torrance L (2002) Applications of recombinant antibodies in plant pathology. Mol Plant Pathol 3:401–407.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • William A. Powell
    • 1
  • Charles A. Maynard
    • 1
  • Brian Boyle
    • 2
  • Armand SéGuin
    • 2
  1. 1.College of Environmental Science and ForestryState University of New YorkSyracuseUSA
  2. 2.Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreSainte-FoyCanada

Personalised recommendations