Skip to main content

The Use of Genetic Transformation Procedures to Study the Defence and Disease Resistance Traits of Trees

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfaro RI (1995) An induced defense reaction in white spruce to attack by the white pine weevil, Pissodes strobi. Can J For Res 25:1725–1730.

    Google Scholar 

  • Anagnostakis SL (1995) The pathogens and pests of chestnuts. In: Andrews JH, Tommerup I (eds) Advances in botanical research, vol 21. Academic Press, New York, pp 125–145.

    Google Scholar 

  • Arimura GI, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515.

    PubMed  CAS  Google Scholar 

  • Arimura G, Huber DPW, Bohlmann J (2004) Forest tent caterpillars (Malacosoma disstria) induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus trichocarpa x deltoides): cDNA cloning, functional characterization, and patterns of gene expression of (-)-germacrene D synthase, PtdTPS1. Plant J 37:603–616.

    PubMed  CAS  Google Scholar 

  • Arimura G, Kost C, Boland W (2005) Herbivore-induced, indirect plant defences. Biochim Biophys Acta 1734:91–111.

    PubMed  CAS  Google Scholar 

  • Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci USA 95:8113–8118.

    PubMed  CAS  Google Scholar 

  • Baldwin IT, Preston CA (1999) The eco-physiological complexity of plant responses to insect herbivores. Planta 208:137–145.

    CAS  Google Scholar 

  • Baldwin IT, Schultz JC (1983) Rapid changes in tree leaf chemistry induced by damage- evidence for communication between plants. Science 221:277–279.

    PubMed  CAS  Google Scholar 

  • Baldwin IT, Halitschke R, Kessler A, Schittko U (2001) Merging molecular and ecological approaches in plant-insect interactions. Curr Opin Plant Biol 4:351–358.

    PubMed  CAS  Google Scholar 

  • Baldwin IT, Kessler A, Halitschke R (2002) Volatile signaling in plant–herbivore interactions: what is real? Curr Opin Plant Biol 5:351–354.

    PubMed  CAS  Google Scholar 

  • Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nature Biotechnol 23:57–62.

    CAS  Google Scholar 

  • Belkhadir Y, Subramaniam R, Dangl JL (2004) Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol 7:391–399.

    PubMed  CAS  Google Scholar 

  • Berryman AA (1972) Resistance of conifers to invasion by bark beetle-fungus associations. BioScience 22:598–602.

    Google Scholar 

  • Bohlmann J, Steele CL, Croteau R (1997) Monoterpene synthases from Grand fir (Abies grandis)-cDNA isolation, characterization, and functional expression of myrcene synthase, (-)(4S)-limonene synthase, and (-)-(1S, 5S)-pinene synthase. J Biol Chem 272:21784–21792.

    PubMed  CAS  Google Scholar 

  • Boucher D, Lavallée R, Mauffette Y (2001) Biological performance of the white pine weevil in relation to the anatomy of the resin canal system of four different host species. Can J For Res 31:2035–2041.

    Google Scholar 

  • Bown AW, Hall DE, MacGregor KB (2002) Insect footsteps on leaves stimulate the accumulation of 4-aminobutyrate and can be visualized through increased chlorophyll fluorescence and superoxide production. Plant Physiol 129:1430–1434.

    PubMed  CAS  Google Scholar 

  • Brasier CM (1991) Ophiostoma novo-ulmi sp. novi, causative agent of Dutch elm disease pandemic. Mycopathologia 115:151–161.

    Google Scholar 

  • Brasier CM (2001) The rapid evolution of introduced plant pathogens via interspecific hybridization. Bioscience 51:123–133.

    Google Scholar 

  • Brasier CM, Cooke DEL, Duncan JM (1999) Origin of a new Phytophthora pathogen through interspecific hybridization. Proc Natl Acad Sci USA 96:5878–5883.

    PubMed  CAS  Google Scholar 

  • Cane KA, Mayer M, Lidgett AJ, Michael AJ, Hamill JD (2005) Molecular analysis of alkaloid metabolism in AABB v. aabb genotype Nicotiana tabacum in response to wounding of aerial tissues and methyl jasmonate treatment of cultured roots. Funct Plant Biol 32:305–320.

    CAS  Google Scholar 

  • Cavey JF (1998) Solid wood packing material from China: initial pest risk assessment on certain wood boring beetles known to be associated with cargo shipments: Asian Longhorned Beetle (Anoplophora glabripennis), Ceresium, Monochamus and Hesperophanes. USDA-APHIS Note.

    Google Scholar 

  • Cheong JJ, Choi YD (2003) Methyl jasmonate as a vital substance in plants. Trends Genet 19:409–413.

    PubMed  CAS  Google Scholar 

  • Christiansen E, Krokene P (1999) Can Norway spruce trees be “vaccinated” against attack by Ips typographus? Agricult For Entomol 1:185–187.

    Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381.

    PubMed  CAS  Google Scholar 

  • D’Auria JC, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8:308–316.

    PubMed  Google Scholar 

  • de Bruxelles GL, Roberts MR (2001) Signals regulating multiple responses to wounding and herbivores. Crit Rev Plant Sci 20(5):487–521.

    Google Scholar 

  • Degenhardt J, Gershenzon J, Baldwin IT, Kessler A (2003) Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotechnol 14:169–176.

    PubMed  CAS  Google Scholar 

  • Dicke M, Gols R, Ludeking D, Posthumus MA (1999) Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. J Chem Ecol 25:1907–1922.

    CAS  Google Scholar 

  • Dicke M, Agrawal AA, Bruin J (2003) Plants talk, but are they deaf? Trends Plant Sci 8:403–405.

    PubMed  CAS  Google Scholar 

  • Dodds PN, Schwechheimer C (2002) A breakdown in defence signaling. Cell 14 [Suppl]:S5–S8.

    CAS  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902.

    PubMed  CAS  Google Scholar 

  • Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci USA 102:933–938.

    PubMed  CAS  Google Scholar 

  • Duffey SS, Stout MJ (1996) Antinutritive and toxic components of plant defense against insects. Arch Insect Biochem Physiol 32:3–37.

    CAS  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschi T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200.

    PubMed  CAS  Google Scholar 

  • Elfstrand M, Fossdal CG, Swedjemark G, Clapham D, Olsson O, Sitbon F, Sharma P, Lonneborg A, von Arnold S (2001) Identification of candidate genes for use in molecular breeding -a case study with the Norway spruce defensin-like gene, Spi 1. Silvae Genetica 50:75–81.

    Google Scholar 

  • Fäldt J, Martin D, Miller B, Rawat S, Bohlmann J (2003a) Traumatic resin defense in Norway spruce (Picea abies): Methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Mol Biol 51:119–133.

    PubMed  Google Scholar 

  • Fäldt J, Arimura G, Gershenzon J, Takabayashi J, Bohlmann J (2003b) Functional identification of AtTPS03 as (E)-beta-ocimene synthase: a monoterpene synthase catalyzing jasmonate- and wound inducible volatile formation in Arabidopsis thaliana. Planta 216:745–751.

    PubMed  Google Scholar 

  • Farmer EE, Alméras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372–378.

    PubMed  CAS  Google Scholar 

  • Fenning TM, Gershenzon J (2002) Where will the wood come from? Plantation forestry and a role for biotechnology. Trends Plant Sci 20:291–296.

    CAS  Google Scholar 

  • Fossdal CG, Nagy NE, Sharma P, Lönneborg A (2003) The putative gymnosperm plant defensin polypeptide (SPI1) accumulates after seed germination, is not readily released, and the SPI1 levels are reduced in Pythium dimorphum-infected spruce roots. Plant Mol Biol 52:291–302.

    PubMed  CAS  Google Scholar 

  • Franceschi VR, Krekling T, Berryman AA, Christiansen E (1998) Specialized phloem parenchyma cells in Norway spruce (Pinaceae) bark are an important site of defense reactions. Am J Bot 85:601–615.

    Google Scholar 

  • Franceschi VR, Krokene P, Krekling T, Christiansen E (2000) Phloem parenchyma cells are involved in local and distant defense responses to fungal inoculation or bark beetle attack in Norway spruce (Pinaceae). Am J Bot 87:314–326.

    PubMed  Google Scholar 

  • Franceschi VR, Krekling T, Christiansen E (2002) Application of methyl jasmonate on Picea abies (Pinaceae) stems induces defense-related responses in phloem and xylem. Am J Bot 89:602–610Franceschi VR, Krokene P, Chistiansen E, Krekling T (2005) Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol 167:353–375.

    Google Scholar 

  • Gartland JS, McHugh AT, Brasier CM, Irvine RJ, Fenning TM, Gartland KMA (2000) Regeneration of phenotypically normal English elm (Ulmus procera) plantlets following transformation with an Agrobacterium tumefaciens binary vector. Tree Physiol 20:901–907.

    PubMed  CAS  Google Scholar 

  • Gartland JS, Brasier CM, Fenning TM, Birch A, Gartland KMA (2001) Ri-plasmid mediated transformation and regeneration of Ulmus procera (English Elm). Plant Growth Regul 33:123–129.

    CAS  Google Scholar 

  • Gartland KMA, Crow RM, Fenning TM, Gartland JS (2003) Genetically modified trees: properties and potential. J Arboricult 29:259–266.

    Google Scholar 

  • Gatz C, Lenk I (1998) Promoters that respond to chemical inducers. Trends Plant Sci 3:352–358.

    Google Scholar 

  • Gershenzon J (1994) The metabolic cost of terpenoid accumulation in higher-plants. J Chem Ecol 20:1281–1328.

    CAS  Google Scholar 

  • Gershenzon J, Kreis W (1999) Biochemistry of terpenoids: monoterpenes, sesquiterpenes, diterpenes, sterols, cardiac glycosides and steroid saponins. In: Wink M (ed) Biochemistry of plant secondary metabolism. Annual Plant Reviews, vol 2, chap 5.Sheffield Academic Press, Sheffield, UK, pp 223–299.

    Google Scholar 

  • Groover A.T (2005) What genes make a tree a tree? Trends Plant Sci 10:210–214.

    PubMed  CAS  Google Scholar 

  • Guillet G, Bélanger A, Arnason JT (1998) Volatile monoterpenes in Porophyllum gracile and P. ruderale (Asteraceae): identification, localization and insecticidal synergism with a-terthienyl. Phytochemistry 49:423–429.

    CAS  Google Scholar 

  • Hamill JD, Parr AJ, Robins RJ, Rhodes MJC (1986) Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes. Plant Cell Rep 5:111–114.

    CAS  Google Scholar 

  • Harrison MJ, Baldwin IT (2004) Biotic interactions: Ploy and counter-ploy in the biotic interactions of plants. Curr Opin Plant Biol 7:353–355.

    Google Scholar 

  • Haukioja E (2005) Plant defenses and population fluctuations of forest defoliators: mechanism-based scenarios. Ann Zoologici Fennici 42:313–325.

    Google Scholar 

  • Heil M (2002) Ecological costs of induced resistance. Curr Opin Plant Biol 5:345–350.

    PubMed  Google Scholar 

  • Heil M, Greiner S, Meimberg H, Kruger R, Noyer JL, Heubl G, Linsenmair KE, Boland W (2004) Evolutionary change from induced to constitutive expression of an indirect plant resistance. Nature 430:205–208.

    PubMed  CAS  Google Scholar 

  • Hilker M, Meiners T (2006) Eggs of herbivorous insects inducing early alert in plants. J Chem Ecol 32:6 (in press).

    Google Scholar 

  • Hilker M, Kobs C, Schrank K, Varama M (2002a) Insect egg deposition induces Pinus to call for egg parasitoids. J Exp Biol 205:455–461.

    PubMed  Google Scholar 

  • Hilker M, Rohfritsch O, Meiners T (2002b) The plant’s response towards insect egg deposition. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell, Berlin, pp 205–233.

    Google Scholar 

  • Hu JJ, Tian YC, Han YF, Li L, Zhang BE (2001) Field evaluation of insect-resistant transgenic Populus nigra trees. Euphytica 121:123–127.

    Google Scholar 

  • Hudgins JW, Franceschi VR (2004) Methyl jasmonate-induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation. Plant Physiol 135:2134–2149.

    PubMed  CAS  Google Scholar 

  • Hudgins JW, Krekling T, Franceschi VR (2003a) The distribution of calcium oxalate crystals in the secondary phloem of conifers: a constitutive defense mechanism? New Phytol 159:677–690.

    CAS  Google Scholar 

  • Hudgins JW, Christiansen E, Franceschi VR (2003b) Methyl jasmonate induces changes mimicking anatomical defenses in diverse members of the Pinaceae. Tree Physiol 23:361–371.

    PubMed  CAS  Google Scholar 

  • Hudgins JW, Christiansen E, Franceschi VR (2004) Induction of anatomically based defense responses in stems of diverse conifers by methyl jasmonate: a phylogenetic perspective. Tree Physiol 24:251–264.

    PubMed  CAS  Google Scholar 

  • Ishida T (2005) Biotransformation of terpenoids by mammals, microorganisms, and plant-cultured cells. Chem Biodiv 2:569–590.

    CAS  Google Scholar 

  • Kappers IF, Aharoni A, van Herpen TWJM, Luckerhoff LLP, Dicke M, Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts, bodyguards to Arabidopsis. Science 309:2070–2072.

    PubMed  CAS  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. Univ Chicago Press, Chicago.

    Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144.

    PubMed  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory. Annu Rev Plant Biol 53:299–328.

    PubMed  CAS  Google Scholar 

  • Kirst M, Johnson AF, Baucom C, Ulrich E, Hubbard K, Staggs R, Paule C, Retzel E, Whetten R, Sederoff R (2003) Apparent homology of expressed genes from wood forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana. Proc Natl Acad Sci USA 100:7383–7388.

    PubMed  Google Scholar 

  • Kozlowski G, Buchala A, Métraux JP (1999) Methyl jasmonate protects Norway spruce [Picea abies (L.) Karst.] seedlings against Pythium ultimum Trow. Physiol Mol Plant Pathol 55:53–58.

    CAS  Google Scholar 

  • Krokene P, Solheim H, Krekling T, Christiansen E (2003) Inducible anatomical defense responses in Norway spruce stems and their possible role in induced resistance. Tree Physiol 23:191–197.

    PubMed  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331.

    PubMed  CAS  Google Scholar 

  • Kwong RM, Field RP (1994) Elm leaf beetle history and distribution in southern Victoria. Plant Protect Quart 9:43–47.

    Google Scholar 

  • Levée V, Séguin A (2001) Inducible expression of the heterologous PAL2 promoter from bean in white pine (Pinus strobus) transgenic cells. Tree Physiol 21:665–672.

    PubMed  Google Scholar 

  • Li L, Zhou YH, Cheng XF, Sun JY, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Nat Acad Sci USA 100:4939–4944.

    PubMed  CAS  Google Scholar 

  • Lieutier F, Brignolas F, Sauvard D, Yart A, Galet C, Brunet M, van de Sype H (2003) Intra- and inter-provenance variability in phloem phenols of Picea abies and relationship to a bark beetle associated fungus. Tree Physiol 23:47–256.

    Google Scholar 

  • Linden JC, Phisalaphong M (2000) Oligosaccharides potentiate methyl jasmonate-induced production of paclitaxel in Taxus canadensis. Plant Sci 158:41–51.

    PubMed  CAS  Google Scholar 

  • Logan BA, Monson RK, Potosnak MJ (2000) Biochemistry and physiology of foliar isoprene production. Trends Plant Sci 5:477–481.

    PubMed  CAS  Google Scholar 

  • Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8:1–9.

    Google Scholar 

  • Loughrin JH, Manukian A, Heath RR, Turlings TCJ, Tumlinson JH (1994) Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants. Proc Natl Acad Sci USA 91:11836–11840.

    PubMed  CAS  Google Scholar 

  • Maffei M, Bossi S, Spiteller D, Mithöfer A, Boland W (2004) Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations oral secretions, and regurgitate components. Plant Physiol 134:1752–1762.

    PubMed  CAS  Google Scholar 

  • Mahmoud SS, Croteau RB (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7:366–373.

    PubMed  CAS  Google Scholar 

  • Maleck K, Dietrich RA (1999) Defense on multiple fronts: how do plants cope with diverse enemies? Trends Plant Sci 4:215–219.

    PubMed  Google Scholar 

  • Malone M (1996) Rapid long distance signal transmission in higher plants. Adv Bot Res 22:163–228.

    CAS  Google Scholar 

  • Martin D, Tholl D, Gershenzon J, Bohlmann J (2002) Methyl jasmonate induces traumatic resin ducts terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol 129:1003–1018.

    PubMed  CAS  Google Scholar 

  • Martin D, Gershenzon J, Bohlmann J (2003) Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol 132:1586–1599.

    PubMed  CAS  Google Scholar 

  • Martin DM, Fäldt J, Bohlmann J (2004) Functional characterization of nine Norway spruce TPS genes and evolution of Gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol 135:1908–1927.

    PubMed  CAS  Google Scholar 

  • McDowell JM, Woffenden BJ (2003) Plant disease resistance genes: recent insights and potential applications. Trends Biotechnol 21:178–183.

    PubMed  CAS  Google Scholar 

  • Meiners T, Hilker M (1997) Host location in Oomyzus gallerucae (Hymenoptera: Eulophidae), an egg parasitoid of the elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae). Oecologia 112:87–93.

    Google Scholar 

  • Meiners T, Hilker M (2000) Induction of plant synomones by oviposition of a phytophagous insect. J Chem Ecol 26:221–232.

    CAS  Google Scholar 

  • Millar JG, Haynes KF (1998) Methods in chemical ecology, vol 1. Kluwer Academic Publ, Dordrecht, Netherlands.

    Google Scholar 

  • Miller B, Oschinski C, Zimmer W (2001) First isolation of an isoprene synthase gene from poplar and successful expression of the gene in Escherichia coli. Planta 213:483–487.

    PubMed  CAS  Google Scholar 

  • Miller B, Madilao LL, Ralph S, Bohlmann J (2005) Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol 137:369–382.

    PubMed  CAS  Google Scholar 

  • Mithöfer A, Wanner G, Boland W (2005) Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol 137:1160–1168.

    PubMed  Google Scholar 

  • Moran PJ, Cheng Y, Cassell JL, Thompson GA (2002) Gene expression profiling of Arabidopsis thaliana in compatible plant aphid interactions. Arch Insect Biochem Physiol 51:182–203.

    PubMed  CAS  Google Scholar 

  • Morris ER, Walker JC (2003) Receptor-like protein kinases: the keys to response. Curr Opin Plant Biol 6:339–342.

    PubMed  CAS  Google Scholar 

  • Mumm R, Schrank K, Wegener R, Schulz S, Hilker M (2003) Chemical analysis of volatiles emitted by Pinus sylvestris after induction by insect oviposition. J Chem Ecol 29:1235–1252.

    PubMed  CAS  Google Scholar 

  • Mumm R, Tiemann T, Schulz S, Hilker M (2004) Analysis of volatiles from black pine (Pinus nigra): significance of wounding and egg deposition by a herbivorous sawfly. Phytochemistry 65:3221–3230.

    PubMed  CAS  Google Scholar 

  • Nagy NE, Franceschi VR, Solheim H, Krekling T, Christiansen E (2000) Wound-induced traumatic resin duct development in stems of Norway spruce (Pinaceae): anatomy and cytochemical traits. Am J Bot 87:302–313.

    PubMed  Google Scholar 

  • Nagy NE, Franceschi VR, Kvaalen H, Solheim H (2005) Callus cultures and bark from Norway spruce clones show similar cellular features and relative resistance to fungal pathogens. Trees 19:695–703.

    Google Scholar 

  • Nardini A, Raimondo F, Scimone M, Salleo S (2004) Impact of the leaf miner Cameraria ohridella on whole-plant photosynthetic productivity of Aesculus hippocastanum: insights from a model. Trees 18:714–721.

    Google Scholar 

  • Nicole MC, Zeneli G, Lavallée R, Rioux D, Bauce E, Morency MJ, Fenning TM, Séguin A (2006) Induction of terpenoid synthases in Norway spruce (Picea abies) in response to white pine weevil (Pissodes strobi) attack, wounding and jasmonic acid. Tree Phys (in press) Nürnberger, T, Scheel D (2001) Signal transmission in the plant immune response. Trends Plant Sci 6:372–379.

    Google Scholar 

  • Orians C (2005) Herbivores, vascular pathways, and systemic induction: facts and artifacts. J Chem Ecol 31:2231–2242.

    PubMed  CAS  Google Scholar 

  • Padidam M (2003) Chemically regulated gene expression in plants. Curr Opin Plant Biol 6:169–177.

    PubMed  CAS  Google Scholar 

  • Paré PW, Tumlinson JH (1997) Induced synthesis of plant volatiles. Nature 385:30–31.

    Google Scholar 

  • Parker JE (2003) Plant recognition of microbial patterns. Trends Plant Sci 8:245–247.

    PubMed  CAS  Google Scholar 

  • Peña L, Séguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19:500–506.

    PubMed  Google Scholar 

  • Pervieux I, Bourassa M, Laurans F, Hamelin R, Séguin A (2004) A spruce defensin showing strong antifungal activity and increased transcript accumulation after wounding and jasmonate treatments. Physiol Mol Plant Pathol 64:331–341.

    CAS  Google Scholar 

  • Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243.

    PubMed  CAS  Google Scholar 

  • Pickett JA, Poppy GM (2001) Switching on plant genes by external chemical signals. Trends Plant Sci 6:137–139.

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, van Loon LC (1999) Salicylic acid-independent plant defence pathways. Trends Plant Sci 4:52–58.

    PubMed  Google Scholar 

  • Polin LD, Liang H, Rothrock RE, Nishii M, Diehl DL, Newhouse AE, Nairn CJ, Powell WA, Maynard CA (2006) Agrobacterium-Mediated Transformation of American Chestnut (Castanea dentata (Marsh.) Borkh.) Somatic Embryos. Plant Cell Tiss Org Cult (in press).

    Google Scholar 

  • Raffa KF (1989) Genetic-engineering of trees to enhance resistance to insects–evaluating the risks of biotype evolution and secondary pest outbreak. Bioscience 39:524–534.

    Google Scholar 

  • Raffa KF (2004) Transgenic resistance in short rotation plantation trees: benefits, risks, integration with multiple tactics, and the need to balance the scales. In: Strauss SH, Bradshaw HD (eds) The bioengineered forest. Challenges for Science and Technology. Resources for the Future, Washington, DC, pp 208–227.

    Google Scholar 

  • Rakwal R, Agrawal GK (2003) Wound signaling-coordination of the octadecanoid and MAPK pathways. Plant Phys Biochem 41:855–861.

    CAS  Google Scholar 

  • Rathjen JP, Moffett P (2003) Early signal transduction events in specific plant disease resistance. Curr Opin Plant Biol 6:300–306.

    PubMed  CAS  Google Scholar 

  • Ruther J, Hilker M (2003) Attraction of forest cockchafer Melolontha hippocastani to (Z)-3-hexen-1-ol and 1, 4-benzoquinone: application aspects. Entomol Exp Appl 107:141–147.

    CAS  Google Scholar 

  • Ruther J, Kleier S (2005) Plant-plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol. J Chem Ecol 31:2217–2222.

    PubMed  CAS  Google Scholar 

  • Ryan CA, Pearce G, Scheer J, Moura DS (2002) Polypeptide hormones. Plant Cell 14 [Suppl]:S251–S264.

    PubMed  CAS  Google Scholar 

  • Sabelis MW, van Baalen M, Bakker FM, Bruin J, Drukker B, Egas M, Janssen ARM, Lesna IK, Pels B, van Rijn P, Scutareanu P (1999) The evolution of direct and indirect plant defence against herbivorous arthropods. In: Olff H, Brown VK, Drent RH (eds) Herbivores between plants and predators. Blackwell Science Publ, Oxford, pp 109–166.

    Google Scholar 

  • Sandnes A, Solheim H (2002) Variation in tree size and resistance to Ceratocystis polonica in a monoclonal stand of Picea abies. Scand J For Res 17:522–528.

    Google Scholar 

  • Schnee C, Kollner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. PNAS 103:1129–1134.

    PubMed  CAS  Google Scholar 

  • Schröder R, Forstreuter M, Hilker M (2005) A plant notices insect egg deposition and changes its rate of photosynthesis. Plant Physiol 138:470–477.

    PubMed  Google Scholar 

  • Seybold SJ, Bohlmann J, Raffa KF (2000) Biosynthesis of coniferophagous bark beetle pheromones and conifer isoprenoids: evolutionary perspectives and synthesis. Can Entomol 132:697–753.

    Google Scholar 

  • Spencer A, Hamill JD, Rhodes MJ (1993) In vitro biosynthesis of monoterpenes by Agrobacterium transformed shoot cultures of 2 Mentha species. Phytochemistry 32:911–919.

    CAS  Google Scholar 

  • Stratmann JW (2003) Long distance run in the wound process–jasmonic acid is pulling ahead. Trends Plant Sci 8:247–250.

    PubMed  CAS  Google Scholar 

  • Takayama Y, Sakagami S (2002) Peptide signalling in plants. Curr Opin Plant Biol 5:382–387.

    PubMed  CAS  Google Scholar 

  • Tang W, Luo, XY, Samuels V (2004) Regulated gene expression with promoters responding to inducers. Plant Science 166:827–834.

    CAS  Google Scholar 

  • Tholl D, Boland W, Hansel A, Loreto F, Röse U, Schnitzler JP (2006) Practical approaches to plant volatile analysis. Plant J 45:540–560.

    PubMed  CAS  Google Scholar 

  • Tomlin ES, Antonejevic E, Alfaro RI, Borden JH (2000) Changes in volatile terpene and diterpene resin acid composition of resistant and susceptible white spruce leaders exposed to simulated white pine weevil damage. Tree Physiol 20:1087–1095.

    PubMed  CAS  Google Scholar 

  • Tooker JF, de Moraes CM (2005) Jasmonate in Lepidoptera eggs and neonates. J Chem Ecol 31:2753–2759.

    PubMed  CAS  Google Scholar 

  • Trapp S, Croteau R (2001) Defensive resin biosynthesis in conifers. Annu Rev Plant Physiol Plant Mol Biol 52:689–724.

    PubMed  CAS  Google Scholar 

  • Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host seeking parasitic wasps. Science 250:1251–1253.

    PubMed  CAS  Google Scholar 

  • Turlings TCJ, Loughrin JH, McCall PJ, Röse USR, Lewis WJ, Tumlinson JH (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci USA 92:4169–4174.

    PubMed  CAS  Google Scholar 

  • Turlings TCJ, Lengwiler UB, Bernasconi ML, Wechsler D (1998) Timing of induced volatile emissions in maize seedlings. Planta 207:146–152.

    CAS  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216.

    PubMed  CAS  Google Scholar 

  • Wallin KF, Raffa KF (2004) Feedback between individual host selection behaviour and population dynamics in an eruptive herbivore. Ecol Monogr 74:101–116.

    Google Scholar 

  • Walter C, Fenning T (2004) Deployment of genetically-engineered trees in plantation forestry–an issue of concern? The science and politics of genetically modified tree plantations. In: Walter C, Carson M (eds) Plantation forest biotechnology for the 21st century. Research Signpost, Trivandrum, Kerala, India, pp 423–446.

    Google Scholar 

  • Wang MB, Waterhouse PM (2002) Application of gene silencing in plants. Curr Opin Plant Biol 5:146–150.

    PubMed  CAS  Google Scholar 

  • Wang KLC, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14 [Suppl]:S131–S151.

    PubMed  CAS  Google Scholar 

  • Wasternack C, Parthier B (1997) Jasmonate-signaled plant gene expression. Trends Plant Sci 2:302–307.

    Google Scholar 

  • Weber H (2002) Fatty acid-derived signals in plants. Trends Plant Sci 7:217–224.

    PubMed  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590.

    PubMed  CAS  Google Scholar 

  • Whitham TG, Maschinski J, Larson KC, Paige KN (1991) Plant responses to herbivory, the continuum from negative to positive and underlying physiological mechanisms. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant-animal interactions. Evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 227–256.

    Google Scholar 

  • Wittstock U, Gershenzon J (2002) Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr Opin Plant Biol 5:300–307.

    PubMed  CAS  Google Scholar 

  • Zeneli G, Krokene P, Christiansen E, Krekling T, Gershenzon J (2006) Methyl jasmonate treatment of large Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica, a bark beetle-associated fungus. Tree Physiol (in press).

    Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Fenning, T.M. (2006). The Use of Genetic Transformation Procedures to Study the Defence and Disease Resistance Traits of Trees. In: Fladung, M., Ewald, D. (eds) Tree Transgenesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32199-3_10

Download citation

Publish with us

Policies and ethics