Skip to main content

Quantification of Early Diagenesis: Dissolved Constituents in Pore Water and Signals in the Solid Phase

  • Chapter
Marine Geochemistry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller, R.C. and DeMaster, D.J., 1984. Estimates of particle flux and reworking at the deep-sea floor using 234Th/238U disequilibrium. Earth and Planetary Science Letters, 67: 308–318.

    Article  Google Scholar 

  • Aller, R.C., 1988. Benthic fauna and biogeochemical processes in marine sediments: The role of burrow structures. In: Blackburn, T.H. and Sørensen, J. (eds), Nitrogen cycling coastal marine environments. SCOPE. Wiley & Sons Ltd., pp. 301–338.

    Google Scholar 

  • Aller, R.C., 1990. Bioturbation and manganese cycling in hemipelagic sediments. Phil. Trans. R. Soc. Lond., 331: 51–68.

    Google Scholar 

  • Aller, R.C., 1994. The sedimentary Mn cycle in Long Island Sound: Its role as intermediate oxidant and the influence of bioturbation, O2, and Corg flux on diagenetic reaction balances. Journal of Marine Research, 52: 259–293.

    Article  Google Scholar 

  • Archer, D., Emerson, S. and Smith, C.R., 1989. Direct measurements of the diffusive sublayer at the deep sea floor using oxygen microelectrodes. Nature, 340: 623–626.

    Article  Google Scholar 

  • Archer, D. and Devol, A., 1992. Benthic oxygen fluxes on the Washington shelf and slope: A comparison of in situ microelectrode and chamber flux measurements. Limnology and Oceanography, 37: 614–629.

    Google Scholar 

  • Archie, G.E., 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. Am. Inst. Min. Metall., 146: 54–62.

    Google Scholar 

  • Berner, R.A., 1980. Early diagenesis: A theoretical approach. Princton Univ. Press, Princton, NY, 241 pp.

    Google Scholar 

  • Boudreau, B.P., 1997. Diagenetic models and their impletation: modelling transport and reactions in aquatic sediments. Springer, Berlin, Heidelberg, NY, 414 pp.

    Google Scholar 

  • Cornwell, J.C. and Morse, J.W., 1987. The characterization of iron sulfide minerals in anoxic marine sediments. Marine Chemistry, 22: 193–206.

    Article  Google Scholar 

  • Davison, W., Grime, G.W., Morgan, J.A.W. and Clarke, K., 1991. Distribution of dissolved iron in sediment pore waters at submillimetre resolution. Nature, 352: 323–324.

    Article  Google Scholar 

  • Davison, W. and Zhang, H., 1994. In situ speciation measurements of trace components in natural waters using thin-film gels. Nature, 367: 546–548.

    Article  Google Scholar 

  • Davison, W., Zhang, H. and Grime, G.W., 1994. Performance characteristics of gel probes used for measuring the chemistry of pore waters. Environmental Science & Technology, 28: 1623–1632.

    Article  Google Scholar 

  • Davison, W., Fones, G.R. and Grime, G.W., 1997. Dissolved metals in surface sediment and a microbial mat at 100 µm resolution. Nature, 387: 885–888.

    Article  Google Scholar 

  • Davison, W., Fones, G., Harper, M., Teasdale, P. and Zhang, H., 2000. Dialysis, DET and DGT: in Situ Diffusional Techniques for Studying Water, Sediments and Soils, In: In Situ Chemical Analysis in Aquatic Systems, J. Buffle and G. Horvai, Eds.: Wiley, pp 495–569.

    Google Scholar 

  • De Lange, G.J., 1988. Geochemical and early diagenetic aspects of interbedded pelagic/turbiditic sediments in two North Atlantic abyssal plains. Geologica Ultraiectina, Mededelingen van het Instituut vor Aardwetenschappen der Rijksuniversiteit te Utrecht, 57, 190 pp.

    Google Scholar 

  • De Lange, G.J., Cranston, R.E., Hydes, D.H. and Boust, D., 1992. Extraction of pore water from marine sediments: A review of possible artifacts with pertinent examples from the North Atlantic. Marine Geology, 109: 53–76.

    Article  Google Scholar 

  • De Lange, G.J., 1992a. Shipboard routine and pressure-filtration system for pore-water extraction from suboxic sediments. Marine Geology, 109: 77–81.

    Article  Google Scholar 

  • De Lange, G.J., 1992b. Distribution of exchangeable, fixed, organic and total nitrogen in interbedded turbiditic/pelagic sediments of the Madeira Abyssal Plain, eastern North Atlantic. Marine Geology, 109: 95–114.

    Article  Google Scholar 

  • De Lange, G.J., 1992c. Distribution of various extracted phosphorus compounds in the interbedded turbiditic/pelagic sediments of the Madeira Abyssal Plain, eastern North Atlantic. Marine Geology, 109: 115–139.

    Article  Google Scholar 

  • Dicke, M., 1986. Vertikale Austauschkoeffizienten und Porenwasserfluß an der Sediment/Wasser Grenzfläche. Berichte aus dem Institut für Meereskunde an der Univ. Kiel, 155, 165 pp.

    Google Scholar 

  • Enneking, C., Hensen, C., Hinrichs, S., Niewöhner, C., Siemer, S. and Steinmetz, E., 1996. Poor water chemistry. In: Schulz, H.D. and cruise participants (eds), Report and preliminary results of Meteor cruise M34/2 Walvis Bay-Walvis Bay, 29.01.1996–18.02.1996. Berichte, Fachbereich Geowissenschaften, Univ. Bremen, 78: 87–102.

    Google Scholar 

  • Forster, S., Huettel, M. and Ziebis, W., 1996. Impact of boundary layer flow velocity on oxygen utilisation in coastal sediments. Mar. Ecol. Prog. Ser., 143: 173–185.

    Google Scholar 

  • Fossing, H. and Jørgensen, B.B., 1990. Oxidation and reduction of radiolabeled inorganic sulfur compounds in an estuarine sediment, Kysing Fjord, Denmark. Geochimica et Cosmochimica Acta, 54: 2731–2742.

    Article  Google Scholar 

  • Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D. and Hartman, B., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43: 1075–1090.

    Article  Google Scholar 

  • Glud, R.N., Gundersen, J.K., Jørgensen, B.B., Revsbech, N.P. and Schulz, H.D., 1994. Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements. Deep-Sea Research, 41: 1767–1788.

    Article  Google Scholar 

  • Glud, R.N., Klimant, I., Holst, G., Kohls, O., Meyer, V., Kühl, M. and Gundersen, J.K., 1999. Adaptation, Test and in situ Measurements with O2 Micropt(r)odes on Benthic Landers. Deep Sea Research, 46: 171–183.

    Article  Google Scholar 

  • Glud, R.N., Tengberg, A., Kühl, M., Hall, P.O.J. and Klimant, I., 2001. An in situ instrument for planar O2 optode measurements at benthic interfaces. Limnol. Oceanogr., 46: 2073–2080.

    Article  Google Scholar 

  • Grasshoff, K., Kremling, K. and Ehrhardt, M., 1999 (1st edition 1983). Methods of Seawater Analysis. 2nd edition, Wiley-VCH, Weinheim, NY, 600 pp.

    Google Scholar 

  • Gundersen, J.K. and Jørgensen, B.B., 1990. Microstructure of diffusive boundary layer and the oxygen uptake of the sea floor. Nature, 345: 604–607.

    Article  Google Scholar 

  • Haese, R.R., 1997. Beschreibung und Ouantifizierung frühdiagenetischer Reaktionen des Eisens in Sedimenten des Südatlantiks. Berichte, Fachbereich Geowissenschaften, Univ. Bremen, 99, 118 pp.

    Google Scholar 

  • Hall, P.O.J. and Aller, R.C., 1992. Rapid, small-volume, flow injection analysis for CO2 and NH4 + in marine and freshwaters. Limnology and Oceanography, 35: 1113–1119.

    Google Scholar 

  • Hensen C., Landenberger H., Zabel M., Gundersen J.K., Glud R.N. and Schulz H.D. (1997) Simulation of early diagenetic processes in continental slope sediments off Southwest Africa: The copmputer model CoTAM tested. Marine Geology, 144: 191–210

    Article  Google Scholar 

  • Holby, O. and Riess, W., 1996. In Situ Oxygen Dynamics and pH-Profiles. In: Schulz, H.D. and cruise participants (eds), Report and preliminary results of Meteor cruise M34/2 Walvis Bay-Walvis Bay, 29.01.1996–18.02.1996. Berichte, Fachbereich Geowissenschaften, Univ. Bremen, 78: 85–87.

    Google Scholar 

  • Huettel, M., Ziebis, W. and Forster, S., 1996. Flow-induced uptake of particulate matter in permeable sediments. Limnology and Oceanography, 41: 309–322.

    Google Scholar 

  • Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L. and Shackleton, N.J., 1984. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Saltzman, B., Reidel, D. (Eds.) Milankovitch and Climate. Dordrecht. 1: 269–305

    Google Scholar 

  • Iversen, N. and Jørgensen, B.B., 1985. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnology and Oceanography, 30: 944–955.

    Google Scholar 

  • Iversen, N. and Jørgensen, B.B., 1993. Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity. Geochimica et Cosmochimica Acta, 57: 571–578.

    Article  Google Scholar 

  • Jahnke, R.A., Heggie, D., Emerson, S. and Grundmanis, V., 1982. Pore waters of the central Pacific Ocean: nutrient results. Earth and Planetary Science Letters, 61: 233–256.

    Article  Google Scholar 

  • Jahnke, R.A., 1988. A simple, reliable, and inexpensive pore-water sampler. Limnology and Oceanography, 33: 483–487.

    Article  Google Scholar 

  • Jahnke, R.A. and Christiansen, M.B., 1989. A freevehicle benthic chamber instrument for sea floor studies. Deep-Sea Research, 36: 625–637.

    Article  Google Scholar 

  • Jørgensen, B.B. and Revsbech, N.P., 1985. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnology and Oceanography, 30: 111–122.

    Google Scholar 

  • Jørgensen, B.B., Bang, M. and Blackburn, T.H., 1990. Anaerobic mineralization in marine sediments from the Baltic Sea-North Sea transition. Marine Ecology Progress Series, 59: 39–54.

    Google Scholar 

  • Kasten, S., Haese, R.R., Zabel, M., Rühlemann, C. and Schulz, H.D., 2001. Barium peaks at glacial terminations in sediments of the equatorial Atlantic Ocean — relict of deglacial productivity pulses?. Chemical Geology, 175: 635–651.

    Article  Google Scholar 

  • Kinzelbach, W., 1986. Goundwater Modeling-An Introducion with Sample Programs in BASIC. Elsevier, Amsterdam, Oxford, NY, Tokyo, 333 pp.

    Google Scholar 

  • Klimant, I., Meyer, V. and Kühl, M., 1995. Fiber-oxic oxygen microsensors, a new tool in aquatic biology. Limnology and Oceanography, 40: 1159–1165.

    Article  Google Scholar 

  • Klimant, I., Kühl, M., Glud, R.N. and Holst, G., 1997. Optical Measurement of Oxygen and Temperature in Microscale: Strategies and Biological Applications. Sensors and Actuators B 38: 29–37.

    Article  Google Scholar 

  • Kölling, M., 1986. Vergleich verschiedener Methoden zur Bestimmung des Redoxpotentials natürlicher Gewässer. Meyniana, 38: 1–19.

    Google Scholar 

  • Kölling, M., 2000. Comparison of Different Methods for Redox Potential Determination in Natural Waters. In: Schüring et al. (Eds.): Redox — Fundamentals, Processes and Applications. Springer, Berlin, Heidelberg etc., pp. 42–54.

    Google Scholar 

  • Kühl, M. and Revsbech, N.P., 2001. Biogeochemical Microsensors for Boundary Layer Studies, In Boudreau, B.P. and Jorgensen, B.B. (Eds.) The Benthic Boundary Layer-Transport Processes and Biogeochemistry. Oxford University Press, pp. 180–210.

    Google Scholar 

  • McDuff, R.E. and Ellis, R.A., 1979. Determining diffusion coefficients in marine sediments: A laboratory study of the validity of resistivity technique. American Journal of Science, 279: 66–675.

    Article  Google Scholar 

  • Meijboom, F.W. and van Nordwijk, M., 1992. Rhizon Soil Solution Samplers as artificial roots. In: Kutschera, L., Hübl, E., Lichtenegger, E., Persson, H. and Sobotnik, M., (Eds.): Root Ecology and its practical Application.-Proc 3rd ISSR Symp., Verein für Wurzelforschung, Klagenfurt, Austria; pp. 793–795.

    Google Scholar 

  • Meischner, D. and Rumohr, J., 1974. A Light-weight, High-momentum Gravity Corer for Subaqueous Sediments. Senckenbergiana marit., 6: 105–117.

    Google Scholar 

  • Niewöhner, C., Hensen, C., Kasten, S., Zabel, M. and Schulz, H.D., 1998. Deep sulfate reduction completely mediated by anaerobic methane oxi-dation in sediments of the upwelling area off Namibia. Geochimica et Cosmochimica Acta, 62: 455–464.

    Article  Google Scholar 

  • Pfeifer K., Hensen C., Adler M., Wenzhöfer F., Weber B. and Schulz H.D., 2002. Modeling of subsurface calcite dissolution, including the respiration and reoxidation processes of marine sediments in the region of equatorial upwelling off Gabon. Geochimica and Cosmochimica Acta, 66: 4247–4259

    Article  Google Scholar 

  • Redfield, A.C., 1958. The biological control of chemical factors in the environment. Am. Sci., 46: 206–226.

    Google Scholar 

  • Reeburgh, W.S., 1967. An improved interstitial water sampler. Limnology and Oceanography, 12: 163–165.

    Google Scholar 

  • Reimers, C.E., 1987. An in situ microprofiling instrument for measuring interfacial pore water gradients: methods and oxygen profiles from the North Pacific Ocean. Deep-Sea Research, 34: 2019–2035.

    Article  Google Scholar 

  • Revsbech, N.P., Jørgensen, B.B. and Blackburn, T.H., 1980. Oxygen in the sea bottom measured with a microelektrode. Science, 207: 1355–1356.

    Google Scholar 

  • Revsbech, N.P. and Jørgensen, B.B., 1986. Microelectrodes: Their use in microbial ecology. Advances in Microbial Ecology, 9: 293–352.

    Google Scholar 

  • Revsbech, N.P., 1989. An oxygen microsensor with a guard cathode. Limnology and Oceanography, 34: 474–478.

    Google Scholar 

  • Saager, P.M., Sweerts, J.P. and Ellermeijer, H.J., 1990. A simple pore-water sampler for coarse, sandy sediments of low porosity. Limnology and Oceanography., 35: 747–751.

    Google Scholar 

  • Sarazin, G., Michard, G. and Prevot, F., 1999. A rapid and accurate spectroscopic for alkalinity measurements in sea water samples. Wat. Res., 33: 290–294.

    Article  Google Scholar 

  • Sayles, F.L., Mangelsdorf, P.C., Wilson, T.R.S. and Hume, D.N., 1976. A sampler for the in situ collection of marine sedimentary pore waters. Deep-Sea Research, 23: 259–264.

    Google Scholar 

  • Schüring, J., Schulz, H.D., Fischer, W.R., Böttcher, J. and Duijnisveld, W.H.M. (Eds.), 2000. Redox — Fundamentals, Processes and Applications. Springer, Berlin, Heidelberg etc., 251 pp.

    Google Scholar 

  • Schlüter, M., 1990. Zur Frühdiagenese von organischem Kohlenstoff und Opal in Sedimenten des südlichen und östlichen Weddelmeeres. Berichte zur Polarforschung, Bremerhaven, 73, 156 pp.

    Google Scholar 

  • Schultheiss, P.J. and McPhail, S.D., 1986. Direct indication of pore-water advection from pore pressure measurements in Madeira Abyssal Plain sediments. Nature, 320: 348–350.

    Article  Google Scholar 

  • Schulz, H.D., Dahmke, A., Schinzel, U., Wallmann, K. and Zabel, M., 1994. Early diagenetic processes, fluxes and reaction rates in sediments of the South Atlantic. Geochimica et Cosmochimica Acta, 58: 2041–2060.

    Article  Google Scholar 

  • Seeberg-Elverfeldt, Schlüter, M. and Kölling, M. 2005. Rhizon sampling of porewaters near the sedimentwater interface of aquatic systems. Limnol. Oceanogr. Methods 3: 361–371.

    Google Scholar 

  • Seeburger, I. and Käss, W., 1989. Grundwasser-Redoxpontentialmessung und Probennahmegeräte. DVWK-Schriften, Bonn, 84, 182 pp.

    Google Scholar 

  • Smith, K.L.J. and Teal, J.M., 1973. Deep-sea benthic community respiration: An in-situ study at 1850 meters. Science, 179: 282–283.

    Google Scholar 

  • Tengberg, A., De Bovee, F., Hall, P., Berelson, W., Chadwick, D., Ciceri, G., Crassous, P., Devol, A., Emerson, S., Gage, J., Glud, R., Graziottini, F., Gundersen, J., Hammond, D., Helder, W., Hinga, K., Holby, O., Jahnke, R., Khripounoff, A., Lieberman, S., Nuppenau, V., Pfannkuche, O., Reimers, C., Rowe, G., Sahami, A., Sayles, F., Schurter, M., Smallman, D., Wehrli, B. and De Wilde, P., 1995. Benthic chamber and profiling landers in oceanography-A review of design, technical solutions and function. Progress in Oceanography, 35: 253–292.

    Article  Google Scholar 

  • Tromp, T.K., van Cappellen, P. and Key, R.M., 1995. A global model for the early diagenetisis of organic carbon and organic phosphorus in marine sediments. Geochimica et Cosmochimica Acta, 59: 1259–1284.

    Article  Google Scholar 

  • Van Cappellen, P. and Wang, Y., 1996. Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese. American Journal of Science, 296: 197–243.

    Article  Google Scholar 

  • Viollier, E., Rabouille, C., Apitz, S.E., Breuer, E., Chaillou, G., Dedieu, K., Furukawa, Y, Grenz, C., Hall, P., Janssen, F., Morford, J.L., Poggiale, J.-C., Roberts, S., Shimmield, T., Taillefert, M., Tengberg, A., Wenzhöfer, F. and Witte, U., 2003. Benthic biogeochemistry: state of the art technologies and guidelines for the future of in situ survey. Journal of Experimental Marine Biology and Ecology, 285/286: 5–31.

    Article  Google Scholar 

  • Wenzhöfer F., Adler M., Kohls O., Hensen C., Strotmann B., Boehme S. and Schulz H.D., 2001. Calcite dissolution driven by benthic mineralization in the deep-sea: In situ measurements of Ca2+, pH, pCO2 and O2. Geochimica et Cosmochimica Acta, 65: 2677–2690

    Article  Google Scholar 

  • Wien, K., Wissmann, D., Kölling, M. and Schulz, H.D. 2005a. Fast application of X-ray fluorescence spectrometry aboard ship: how good is the new portable Spectro Xepos analyser. Geomarine Letters, in press.

    Google Scholar 

  • Wien, K., Kölling, M., and Schulz, H.D. 2005b. Close correlation between Sr/Ca ratio and SPECMAP record in bulk sediments from the Southern Cape Basin. Geo-Marine Letters, 25: 265–271.

    Article  Google Scholar 

  • Ziebis, W. and Forster, S., 1996. Impact of biogenic sediment topography on oxygen fluxes in permeable seabeds. Mar. Ecol. Prog. Ser., 140: 227–237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulz, H.D. (2006). Quantification of Early Diagenesis: Dissolved Constituents in Pore Water and Signals in the Solid Phase. In: Schulz, H.D., Zabel, M. (eds) Marine Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32144-6_3

Download citation

Publish with us

Policies and ethics