Skip to main content

Predator-Prey Encounters Studied as Relative Particle Diffusion

  • Chapter
The Logistic Map and the Route to Chaos

Part of the book series: Understanding Complex Systems ((UCS))

Summary

The feasibility of an experimental method for investigations of the particle flux to an absorbing surface in turbulent flows is demonstrated in a Lagrangian as well as an Eulerian representation. A laboratory experiment is carried out, where an approximately homogeneous and isotropic turbulent flow is generated by two moving grids. The simultaneous trajectories of many small approximately neutrally buoyant polystyrene particles are followed in time. In a Lagrangian analysis, we select one of these as the centre of a “sphere of interception”, and obtain estimates for the time variation of the statistical average of the inward particle flux through the surface of this moving sphere. The variation of the flux with the radius in the sphere of interception, as well as the variation with basic flow parameters is well described by a simple model, in particular for radii smaller than a characteristic length scale for the turbulence. Applications of the problem to, for instance, the question of the feeding rate of micro-organisms in turbulent marine environments are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. K. Batchelor: Proc. Cambridge Philos. Soc. 48, 345 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  2. P. H. Roberts: J. Fluid Mech. 11, 257 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. S. Sundby, P. Fossum: J. Plankton Res. 12, 1153 (1990)

    Article  Google Scholar 

  4. T. Kiørboe, E. Saiz: Mar. Ecol. Prog. Ser. 122, 135 (1995)

    Article  Google Scholar 

  5. J. H. Muelbert, M. R. Lewis, D. E. Kelley: J. Plankton Res. 16, 927 (1994)

    Article  Google Scholar 

  6. B. J. Rothschild, T. R. Osborn: J. Plankton Res. 10, 465 (1988)

    Article  Google Scholar 

  7. T. Osborn: J. Plankton Res. 18, 185 (1996)

    Article  MathSciNet  Google Scholar 

  8. J. Mann, S. Ott, H. L. Pécseli, J. Trulsen: Phys. Rev. E 65, 026304 (2002)

    Article  ADS  Google Scholar 

  9. J. Mann, S. Ott, J. S. Andersen: Technical Report No. Risø-R-1036(EN), Risø National Laboratory, DK-4000 Roskilde, Denmark (unpublished), can be downloaded from http://www.risoe.dk/rispubl/VEA/ris-r-1036.htm

    Google Scholar 

  10. S. Ott, J. Mann: J. Fluid Mech. 422, 207 (2000)

    Article  ADS  MATH  Google Scholar 

  11. J. O. Hinze: Turbulence, 2nd edn (McGraw-Hill, New York 1975)

    Google Scholar 

  12. A. S. Monin, A. M. Yaglom: Statistical Fluid Mechanics (The MIT press, Cambridge, Massachusetts, 1975), vol. 2

    Google Scholar 

  13. A. Babiano, J. H. E. Cartwright, O. Piro, A. Provenzale: Phys. Rev. Lett. 84, 5764 (2000)

    Article  ADS  Google Scholar 

  14. M. R. Maxey, J. J. Riley: Phys. Fluids 26, 883 (1983)

    Article  ADS  MATH  Google Scholar 

  15. J. Mann, S. Ott, H. L. Pécseli, J. Trulsen: Phys. Rev. E 67, 056307 (2003)

    Article  ADS  Google Scholar 

  16. L. F. Richardson: Proc. Roy. Soc. London, Ser. A 6, 709 (1926)

    ADS  Google Scholar 

  17. G. Boffetta, A. Celani, A. Crisanti, A. Vulpiani: Phys. Rev. E 60, 6734 (1999)

    Article  ADS  Google Scholar 

  18. M. Virant, T. Dracos: Meas. Sci. Technol. 8, 1529 (1997)

    Article  ADS  Google Scholar 

  19. P. S. Hill, A. R. M. Nowell, P. A. Jumars: J. Mar. Res. 50, 643 (1992)

    Article  Google Scholar 

  20. S. Chandrasekhar: J. Madras Univ. B 27, 251 (1957)

    MATH  Google Scholar 

  21. B. R. Mackenzie, T. Kiørboe, Limnol. Oceanogr. 45, 1 (2000)

    Article  Google Scholar 

  22. S. Chandrasekhar. In: Selected Papers on Noise and Stochastic Processes, ed by N. Wax (Dover, New York 1954), pp 3–91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mann, J., Ott, S., Pécseli, H.L., Trulsen, J. (2006). Predator-Prey Encounters Studied as Relative Particle Diffusion. In: Ausloos, M., Dirickx, M. (eds) The Logistic Map and the Route to Chaos. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32023-7_8

Download citation

Publish with us

Policies and ethics