Computational Fluid Dynamics of Crossflow Filtration in Suspension-Feeding Fishes

  • A. Y. Cheer
  • S. Cheung
  • S. L. Sanderson


Suspension-feeding fishes such as herring and anchovies engulf particle-concentrated water through their mouths and release the water through the posterior oral cavity. Food particles are separated from the water at the gill rakers that act like modern crossflow filters. This paper uses Computational Fluid Dynamic (CFD) techniques to study the feeding mechanism of these suspension feeders. By understanding how food is separated from the water, we can elucidate why fish gill rakers do not get clogged with particles in the same manner that industrial crossflow filters eventually become fouled.

Key words

Crossflow filtration Suspension feeding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gottlieb, S.J., Nutrient Removal by age-O Atlantic Menhaden in Chesapeake Bay and Implications for Seasonal Management of the Fisheries. Ecol. Model 112, pp. 111–130. 1998.CrossRefGoogle Scholar
  2. 2.
    FAO (Food and Agriculture Organization of the United Nations) Year Book of Fishery Statistics, Vol. 86, Capture Production, 1998. Rome: FAO. 2000.Google Scholar
  3. 3.
    Sanderson, S.L. and Wassersug, R. Convergent and Alternative designs for Vertebrate Suspension Feeding. The Skull, Vol. 3, Functional and Evolutionary Mechanisms, pp. 37–112. The Chicago Univ. Press, 1993.CrossRefGoogle Scholar
  4. 4.
    Miller D. J. and R. N. Lea. Guide to the coastal marine fishes of California. California Department of Fish and Game Bulletin. 1972.Google Scholar
  5. 5.
    Gerking, S. D., Feeding Ecology of Fish (Academic, San Diego, 1994).Google Scholar
  6. 6.
    Sanderson, S. L., Cech, J. Jr., and Patterson, M. R., Fluid dynamics in suspension-feeding blackfish. Science 251, 1346–1348 (1991).Google Scholar
  7. 7.
    Hoogenboezem, W., Lammens, E. H. R. R., MacGillavry, P. J. & Sibbing, F. A. Prey Retention and Sieve Adjustment in Filter-Feeding Bream (Abramis brama) (Cyprinidae). Can. J. Fish. Aquat. Sci. 50, 465–471 (1993).Google Scholar
  8. 8.
    Sanderson, S. L. & Wassersug, R. Sci. Am. 262, 96–101 (1990).CrossRefGoogle Scholar
  9. 9.
    Sanderson, S. L., Cheer, A., et al., Crossflow filtration in suspension-feeding fishes. Nature 412, 439–441 (2001).CrossRefGoogle Scholar
  10. 10.
    Scott, K. & Hughes, R. (eds), Industrial Membrane Separation Technology (Blackie, London, 1996).Google Scholar
  11. 11.
    Pulliam, T. H. and Steger, J. L., Implicit Finite Difference Simulation of 3-D Compressible Flow. AIAA J., Vol 18, No. 2, 1980 pp.159–167.zbMATHGoogle Scholar
  12. 12.
    Steger, J. L., Ying, S. X., and Schiff, L. B., A partially Flux Split Algorithm for Numerical Simulation of Compressible Inviscid and Viscous Flow. Proceedings of Workshop on Computational Fluid Dynamics, UC, Davis, CA 1986.Google Scholar
  13. 13.
    Pulliam, T.H. and Chaussee, D. S., A Diagonal Form of an Implicit Approximate Factorization Algorithm. J. Comp Physics Vol. 39, 1981, pp. 347–363.zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Roe, P. L., Approximate Riemann solvers, parameter vectors and difference schemes, J. of Comp. Phys., Vol. 43, 1981, pp. 357–372.zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Lane, D., UFAT-a Particle Tracer for Time-Dependent Flow Fields, in: D. Bergeron and A. Kaufman, eds., Proceedings of Visualization’ 94, Washington, D.C., October 1994.Google Scholar
  16. 16.
    Batchelor, G.K., An Introduction to Fluid Dynamics (Cambridge University Press, 1983).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. Y. Cheer
    • 1
  • S. Cheung
    • 2
  • S. L. Sanderson
    • 3
  1. 1.Dept. of MathUCDavis
  2. 2.NASA Ames Research CenterMoffett Field
  3. 3.Dept. of BiologyCollege of William and MaryWilliamsburg

Personalised recommendations