Control of Shocks in CFD

  • Claude Bardos
  • Olivier Pironneau


Shock Control is a type of inverse problem for which the most suited solution method seems to be least square and optimal control algorithms (see [8]). As control theory assumes differentiability, there are mathematical difficulties when the modelling uses a system of conservation laws like the shallow water or Euler equations (see [15] for example). In this paper we study the differentiated equations of some equations of Fluid Dynamics and show that Calculus of Variation can be applied and control problem can be solved numerically more or less as usual, provided derivatives are understood as distributions.

Key words

Inverse problems optimal control shocks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Bardos and O. Pironneau: A formalism for the differentiation of conservation laws. C.R.Acad. Sci. Paris, t., Série I 335(10):839–845 (2002).MathSciNetzbMATHGoogle Scholar
  2. 2.
    C. Bardos and O. Pironneau: Data Assimilation in the Presence of Shocks. (to appear).Google Scholar
  3. 3.
    Bressan A. and Marson A.: A Variational Calculus for Discontinuous Solutions of Systems of Conservation Laws. Comm. in PDE. Vol 20(9 and 10), 1491–1552, (1995).MathSciNetzbMATHGoogle Scholar
  4. 4.
    Campos-Pinto M., Cohen A., Dahmen W. and DeVore R.: On the Stability of Nonlinear Conservation Laws in the Hausdorff Metric, IGPM Report, RWTH Aachen (2004).Google Scholar
  5. 5.
    Alonso JJ, Kroo IM, Jameson A. Advanced algoritms for design and optimization of QSP. AIAA Pap. 2002-0144. Reno, NV. (2002).Google Scholar
  6. 6.
    Mohammadi, B, Pironneau, O.: Control of Shocks and Sonic Booms. ECCOMAS proceedings, P. Neittanmakki ed. Jyvaskyla, Finland (2004).Google Scholar
  7. 7.
    Mohammadi, B, Pironneau, O.: Applied shape optimization for fluids. Oxford University Press, Oxford (2000).Google Scholar
  8. 8.
    Lions, J.-L.: Optimal Control of Distributed Systems. Springer Verlag, (1970).Google Scholar
  9. 9.
    Giles M.A. and N.A. Pierce. Analytic adjoint solutions for the quasi-one-dimensional euler equations. Journal of Fluid Mechanics, 426:327–345, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Godlewski E. and Olazabal M. and P.A. Raviart. On the linearization of hyperbolic systems of conservation laws. Application to stability. In Équations aux dérivées partielles et applications, pages 549–570. Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris, 1998.Google Scholar
  11. 11.
    Di Cesare N. and O. Pironneau. Shock sensitivity analysis. Computational Fluid Dynamics Journal, 9(2), 2000.Google Scholar
  12. 12.
    Griewank, A. Evaluating Derivatives, Principles and Techniques of Algorithmic Differentiation. Vol 19, Frontiers in Applied Mathematics. SIAM. (2000).Google Scholar
  13. 13.
    Tai-Ping Liu. Hyperbolic and Viscous Conservation Laws. CBMS-NSF Regional Conference Series in Applied Mathematics, 72. (SIAM), Philadelphia, PA, 2000.Google Scholar
  14. 14.
    Majda A.: The stability of multidimensional shock fronts Memoirs of the AMS January 1983 Volume 41 & 43 number 275.Google Scholar
  15. 15.
    Daeszcu D.N. and Navon I. M. Adaptative observations in the context of 4D-Var data assimilation. Meteorlogy and Atmospheric Physics, 85, 205–226 (2004).CrossRefGoogle Scholar
  16. 16.
    Chattot, J-J. Springer (2000).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Claude Bardos
    • 1
  • Olivier Pironneau
    • 1
  1. 1.Laboratoire Jacques-Louis Lions (LJLL)Université Paris VII and Université Paris VI-IUFParis

Personalised recommendations