Advertisement

High-End Computing Challenges in Aerospace Design and Engineering

  • F. Ronald Bailey

Abstract

High-End Computing (HEC) has had significant impact on aerospace design and engineering and is poised to make even more in the future. In this paper we describe four aerospace design and engineering challenges: Digital Flight, Launch Simulation, Liquid Rocket Engine Fuel System and Digital Astronaut. The paper discusses modeling capabilities needed for each challenge and presents projections of future near and far-term HEC computing requirements. NASA’s HEC Project Columbia is described and programming strategies presented that are necessary to achieve high real performance

Keywords

AIAA Paper Programming Strategy Hybrid Programming Human Circulatory System Overset Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Z. Pirzadeh: A Solution-Adaptive Unstructured GridMethod by Grid Subdivision and Local Remeshing. AIAA Journal of Aircraft, 37(5):818–824 (2000).Google Scholar
  2. 2.
    P. R. Spalart, W-H Jou, M. Strelets and S. R. Allmaras: Comments on the Feasibility of LES for Wings, and on RAHS/LES Approach. Advances in DNS/LES, 1st AFOSR Int. Conf. on DNS/LES, Greyden Press, Columbus OH, August 1997.Google Scholar
  3. 3.
    J. R. Forsythe and S. H. Woodson: Unsteady CFD Calculations of Abrupt Wing Stall Using Detached-Eddy Simulation. AIAA Paper 2003-0594, January 2003, Reno, Nevada.Google Scholar
  4. 4.
    K. R. Laflin, O. Brodersen, M. Rakowitz, J. C. Vassberg, E. N. Tinoco, R. A. Wahls, J. H. Morrison, and J. Godard: Summary of Data from the Second AIAA CFD Drag Prediction Workshop. AIAA Paper 2004-0555, Jan. 2004. Reno, NV.Google Scholar
  5. 5.
    M. J. Hemsch and J. H. Morrison: Statistical Analysis of CFD Solutions from 2nd Drag Prediction Workshop. AIAA Paper 2004-0566, Jan. 2004. Reno, NV.Google Scholar
  6. 6.
    R. Meakin: Adaptive Spatial Partitioning and Refinement for Overset Structured Grids. Computational Methods Applied Mechanical Engineering, 189:1077–1117, 2000.zbMATHCrossRefGoogle Scholar
  7. 7.
    R. Meakin: Automatic Off-Body Grid Generation for Domains of Arbitrary Size. AIAA Paper 2001-2536. June 2001. Anaheim, CA.Google Scholar
  8. 8.
    R. Meakin. Private Communication.Google Scholar
  9. 9.
    T. A. Nygaard and R. L. Meakin: An Aerodynamic Analysis of a Spinning Missile with Dithering Canards. AIAA Paper 2002-2799. June 2002. St. Louis, MO.Google Scholar
  10. 10.
    R. J. Gomez, D. Vicker, S. E. Rogers, M. J. Aftosmis, W. M. Chan, R. Meakin, and S. Murman: STS-107 Investigation Ascent CFD Support. AIAA Paper 2004-2226, June 2004. Portland, OR.Google Scholar
  11. 11.
    M. J. Aftosmis, M. J. Berger and J. E. Melton: Robust and Efficient Cartesian Mesh Generation for Component-Based Geometry. AIAA Journal 36(6):952–960. June 1998.CrossRefGoogle Scholar
  12. 12.
    M. J. Aftosmis, M. J. Berger and G. Adomavicius: A Parallel Multilevel Method for Adaptively Refined Cartesian Grids with Embedded Boundaries. AIAA Paper 2000-0808, Jan. 2000. Reno, NV.Google Scholar
  13. 13.
    C. Kiris, W. Chan, and D. Kwak: A Three-Dimensional Parallel Time-Accurate Turbopump Simulation Procedure Using Overset Grid Systems. Computational Fluid Dynamics 2002, pp. 673–684. Springer-Verlag, Berlin. 2002Google Scholar
  14. 14.
    C. S. Kim, C. Kiris, D. Kwak, and T. David: Numerical Models of Human Circulatory System under Altered Gravity: Brain Circulation. AIAA Paper 2004-1092, Jan 2004. Reno, Nevada.Google Scholar
  15. 15.
    C. Kiris and D. Kwak: Aspects of Unsteady Incompressible Flow Simulations. Computers & Fluids, 31: 627–638, 2002.zbMATHCrossRefGoogle Scholar
  16. 16.
    L. Oliker, X. Li, P. Husbands, and R. Biswas: Effects of Ordering Strategies and Programming Paradigms on Sparse Matrix Computations. SIAM Review 44(3):373–393, 2002.zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    J. R. Taft: Achieving 60 GFLOP/s on the Production Code OVERFLOWMLP. Parallel Computing, 27(4):521–536. 2001.zbMATHCrossRefGoogle Scholar
  18. 18.
    D. C. Jespersen, T. H. Pulliam, and P. G. Buning: Recent Enhancements to OVERFLOW. AIAA Paper 97-0644, Jan 1997. Reno, NV.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • F. Ronald Bailey
    • 1
  1. 1.M.S. 258-6, NASA Ames Research CenterAdvanced Management Technology Inc.Moffett Field

Personalised recommendations