A Mesh Adjustment Scheme for Embedded Boundaries

  • J. S. Sachdev
  • C. P. T. Groth
Conference paper

6 Concluding Remarks

A mesh adjustment scheme has been described in which a body-fitted multi-block mesh is locally adjusted to embedded boundaries that are not aligned with the mesh. This scheme allows for quick and robust mesh generation involving complex embedded boundaries. The viability of this scheme has been demonstrated for stationary and moving embedded boundaries involving inviscid flow. The application of block-based AMR allows for a more detailed representation of the embedded boundary and accurate resolution of flows having multiple scales. An accuracy assessment of viscous discretization operators on the adjusted mesh is currently under investigation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. De Zeeuw and K. G. Powell. J. Comput. Phys., 104:56–68, 1993.zbMATHCrossRefGoogle Scholar
  2. 2.
    S. A. Bayyuk, K. G. Powell, and B. van Leer. AIAA Paper 1993-3391.Google Scholar
  3. 3.
    S. M. Murman, M. J. Aftosmis, and M. J. Berger. AIAA Paper 2003-1119.Google Scholar
  4. 4.
    W. D. Henshaw. J. Comput. Phys., 113:13–25, 1994.zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    C. Hirt, A. Amsden, and J. Cook. J. Comput. Phys., 14(3):227–253, 1974.zbMATHCrossRefGoogle Scholar
  6. 6.
    J. Glimm, M. J. Graham, J. Grove, X. L. Li, T. M. Smith, D. Tan, F. Tangerman, and Q. Zhang. Computers Math. Applic., 35(7):1–11, 1998.zbMATHCrossRefGoogle Scholar
  7. 7.
    C. S. Peskin. Acta Numer., pages 1–39, 2002.Google Scholar
  8. 8.
    P. D. Thomas and C. K. Lombard. AIAA J., 17(10):1030–1037, 1979.zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    T. J. Barth. AIAA Paper 1993-0668.Google Scholar
  10. 10.
    P. L. Roe. J. Comput. Phys., 43:357–372, 1981.zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    J. J. Gottlieb and C. P. T. Groth. J. Comput. Phys., 78:437–458, 1988.zbMATHCrossRefGoogle Scholar
  12. 12.
    B. van Leer, C. H. Tai, and K. G. Powell. AIAA Paper 1989-1933-CP.Google Scholar
  13. 13.
    I. E. Sutherland and G. W. Hodgman. Commun. ACM, 17(1):32–42, 1974.zbMATHCrossRefGoogle Scholar
  14. 14.
    J. S. Sachdev, C. P. T. Groth, and J. J. Gottlieb. AIAA Paper 2003-4106.Google Scholar
  15. 15.
    C. P. T. Groth. ICCFD3 Proceedings, Toronto. Springer-Verlag, 2004.Google Scholar
  16. 16.
    W. J. Coirier and K. G. Powell. J. Comput. Phys., 117:121–131, 1995.zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Strazisar, J. Wood, M. Hathaway, and K. Suder. NASA TP-2879, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. S. Sachdev
    • 1
  • C. P. T. Groth
    • 1
  1. 1.University of Toronto Institute for Aerospace StudiesTorontoCanada

Personalised recommendations