An Error Indicator for Semidiscrete Schemes

  • Daniele Marobin
  • Gabriella Puppo


Rarefaction Wave Contact Discontinuity Error Indicator Adaptive Grid Smoothness Indicator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berger M.J., Colella P., Local adaptive mesh refinement for shock hydrodynamics, J. Comp. Phys., 82, (1989), 67–84.Google Scholar
  2. 2.
    Karni S., Kurganov A., Petrova G., A Smoothness Indicator for Adaptive Algorithms for Hyperbolic Systems, JCP, 178, (2002), 323–341.zbMATHMathSciNetGoogle Scholar
  3. 3.
    Kurganov A., Tadmor E., New High Resolution central Schemes for Non-Linear Conservation Laws and Convection-Diffusion equations, J. Comp. Phys. 160 (2000), 241–282.zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Lax P.D., Liu X.D., Solution of two-dimensional Riemann problems of gas dynamics by positive schemes, SIAM J. Sci. Comp. 19, 1998, N o 2, 319–340.zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Puppo G., Numerical Entropy Production for Central Schemes, SIAM J. Sci. Comp. 25, 2003, N o 4, 1382–1415.zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Shu C. W., Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics (A. Quarteroni editor), Springer, Berlin, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Daniele Marobin
    • 1
  • Gabriella Puppo
    • 2
  1. 1.Aerospace DepartmentPolitecnico di TorinoTorinoItaly
  2. 2.Mathematics DepartmentPolitecnico di TorinoTorinoItaly

Personalised recommendations