Skip to main content

Robustness and efficiency aspects for computational fluid structure interaction

  • Conference paper

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 91))

Abstract

For the numerical simulation of large scale CFD and fluid-structure interaction (FSI) problems efficiency and robustness of the algorithms are two key requirements. In this paper we would like to describe a very simple concept to increase significantly the performance of the element calculation of an arbitrary unstructured finite element mesh on vector computers. By grouping computationally similar elements together the length of the innermost loops and the vector length can be controlled. In addition the effect of different programming languages and different array management techniques will be investigated. A numerical CFD simulation will show the improvement in the overall time-to-solution on vector computers as well as on other architectures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behr M, Pressel DM, Sturek WB (2000) Comp Meth Appl Mech Eng 190:263–277

    Article  MATH  Google Scholar 

  2. Wall WA (1999) Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen. PhD thesis, Institut für Baustatik, Universität Stuttgart

    Google Scholar 

  3. Wall W, Ramm E (1998) Fluid-structure interaction based upon a stabilized (ale) finite element method. In: Oñate E, Idelsohn S (eds) Computational Mechanics. Proc. of the Fourth World Congress on Computational Mechanics WCCM IV, Buenos Aires

    Google Scholar 

  4. Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Comp Mech 18:397–412

    MATH  Google Scholar 

  5. Oliker L, Canning A, Carter J, Shalf J, Skinner D, Ethier S, Biswas R, Djomehri J, van der Wijngaart R (2003) Evaluation of cache-based superscalar and cacheless vector architectures for scientific computations. In: Proc. of the ACM/IEEE Supercomputing Conf. 2003, Phoenix, Arizona, USA

    Google Scholar 

  6. Pohl T, Deserno F, Thürey N, Rüde U, Lammers P, Wellein G, Zeiser T (2004) Performance evaluation of parallel large-scale lattice Boltzmann applications on three supercomputing architectures. In: Proc. of the ACM/IEEE Supercomputing Conf. 2004, Pittsburgh, USA

    Google Scholar 

  7. Ethier CR, Steinman DA (1994) Int J Numer Meth Fluids 19:369–375

    Article  MATH  Google Scholar 

  8. Mok DP (2001) Partitionierte Lösungsansätze in der Strukturdynamik und der Fluid-Struktur-Interaktion. PhD thesis, Institut für Baustatik, Universität Stuttgart

    Google Scholar 

  9. Felippa C, Park K, de Runtz J (1977) Stabilization of staggered solution procedures for fluid-structure interaction analysis. In: Belytschko T, Geers TL (eds) Computational Methods for Fluid-Structure Interaction Problems. American Society of Mechanical Engineers, New York. 26

    Google Scholar 

  10. Felippa C, Park K (1980) Comp Meth Appl Mech Eng 24:61–111

    Article  MATH  Google Scholar 

  11. Piperno S (1997) Int J Numer Meth Fluids 25:1207–1226

    Article  MATH  MathSciNet  Google Scholar 

  12. Le Tallec P, Mouro J (2001) Comp Meth Appl Mech Eng 190:3039–3067

    Article  MATH  Google Scholar 

  13. Lesoinne M, Farhat C (1998) AIAA J 36:1754–1756

    Article  Google Scholar 

  14. Wall W, Mok D, Ramm E (1999) Partitioned analysis approach of the transient coupled response of viscous fluids and flexible structures. In:Wunderlich W (ed) Solids, Structures and Coupled Problems in Engineering. Proc. of the European Conf. on Computational Mechanics, Munich

    Google Scholar 

  15. Irons B, Tuck R (1969) Int J Numer Meth Eng 1:275–277

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Neumann, M., Tiyyagura, S., Wall, W., Ramm, E. (2006). Robustness and efficiency aspects for computational fluid structure interaction. In: Krause, E., Shokin, Y., Resch, M., Shokina, N. (eds) Computational Science and High Performance Computing II. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31768-6_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-31768-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31767-8

  • Online ISBN: 978-3-540-31768-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics