Skip to main content

DDM-based sensitivity analysis and optimization for smooth contact formulations

  • Chapter
Analysis and Simulation of Contact Problems

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 27))

  • 2648 Accesses

Abstract

Sensitivity analysis (SA) is developed for three-dimensional multi-body frictional contact problems. The direct differentiation method (DDM) is applied to obtain response sensitivities with respect to arbitrary design parameters (parameter and shape SA). The FE formulation of contact employs smoothing of the master surface, and the augmented Lagrangian technique is used to enforce the contact and friction conditions. Numerical examples, including application for optimization, illustrate the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Michaleris, D.A. Tortorelli, and C.A. Vidal. Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications to elastoplasticity. Int. J. Num. Meth. Engng., 37:2471–2499, 1994.

    Article  MATH  Google Scholar 

  2. M. Kleiber, H. Antunez, T.D. Hien, and P. Kowalczyk. Parameter Sensitivity in Nonlinear Mechanics. Wiley, Chichester, 1997.

    Google Scholar 

  3. N.H. Kim, K.K. Choi, J.S. Chen, and Y.H. Park. Meshless shape design sensitivity analysis and optimization for contact problem with friction. Comp. Mech., 25(2–3):157–168, 2000.

    Article  MATH  Google Scholar 

  4. A. Srikanth and N. Zabaras. Shape optimization and preform design in metal forming processes. Comp. Meth. Appl. Mech. Engng., 190:1859–1901, 2000.

    Article  MATH  Google Scholar 

  5. S. Stupkiewicz, J. Korelc, M. Dutko, and T. Rodic. Shape sensitivity analysis of large deformation frictional contact problems. Comp. Meth. Appl. Mech. Engng., 191(33):3555–3581, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Stupkiewicz. Augmented Lagrangian formulation and sensitivity analysis of contact problems. In E. Onate and D.R.J. Owen, editors, COMPLAS 2003, VII International Conference on Computational Plasticity, CIMNE, Barcelona, 2003. proceedings on CD.

    Google Scholar 

  7. G. Pietrzak. Continuum mechanics modelling and augmented Lagrangian formulation of large deformation frictional contact problems. PhD thesis, Lausanne, EPFL, 1997.

    Google Scholar 

  8. G. Pietrzak and A. Curnier. Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment. Comp. Meth. Appl. Mech. Engng., 177(3–4):351–381, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Korelc. Multi-language and multi-environment generation of nonlinear finite element codes. Engineering with Computers, 18:312–327, 2002.

    Article  Google Scholar 

  10. T.A. Laursen. Computational Contact and Impact Mechanics. Springer-Verlag, Berlin, 2002.

    MATH  Google Scholar 

  11. P. Wriggers. Computational Contact Mechanics. Wiley, Chichester, 2002.

    MATH  Google Scholar 

  12. L. Krstulović-Opara, P. Wriggers, and J. Korelc. A C 1-continuous formulation for 3D finite deformation frictional contact. Comp. Mech., 29(l):27–42, 2002.

    Article  Google Scholar 

  13. M.A. Puso and T.A. Laursen. A 3D contact smoothing method using Gregory patches. Int. J. Num. Meth. Engng., 54:1161–1194, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Korelc. Computational Templates. User manual. Available at http://www.-fgg.unilj.si/Symech/,2000

    Google Scholar 

  15. S. Wolfram. The Mathematica Book, 4th ed. Wolfram Media/Cambridge University Press, 1999.

    Google Scholar 

  16. L. Fourment, T. Balan, and J.L. Chenot. Optimal design for non-steady-state metal forming processes — II. Application of shape optimization in forging. Int. J. Num. Meth. Engng., 39:51–65, 1996.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Lengiewicz, J., Stupkiewicz, S., Korelc, J., Rodic, T. (2006). DDM-based sensitivity analysis and optimization for smooth contact formulations. In: Wriggers, P., Nackenhorst, U. (eds) Analysis and Simulation of Contact Problems. Lecture Notes in Applied and Computational Mechanics, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31761-9_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-31761-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31760-9

  • Online ISBN: 978-3-540-31761-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics