Skip to main content

The Role of Chaos and Resonances in Brownian Motion

  • Chapter
Chaos, Nonlinearity, Complexity

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 206))

  • 1278 Accesses

Abstract

We study two points of view regarding the origin of irreversible processes. One is the “chaotic hypothesis” that says that irreversible processes are rooted in the randomness generated by chaotic dynamics. The second point of view, put forward by Prigogine’s school, is that irreversibility is rooted in non-integrable dynamics, as defined by Poincaré. Non-integrability is associated with resonances. We consider a simple model of Brownian motion, a harmonic oscillator (particle) coupled to lattice vibration modes (field). We compute numerically the “(, τ) entropy”, which indicates how random are the trajectories and how close they are to Brownian trajectories. We show that (1) to obtain trajectories close to Brownian motion it is necessary to have a resonance between the particle and the lattice, which allows the transfer of information from the lattice to the particle. This resonance makes the system non-integrable in the sense of Poincaré. (2) For random initial conditions, chaos seems to play a secondary role in the Brownian motion, as the entropy is similar for both chaotic and non-chaotic dynamics. In contrast, if the initial conditions are not random, chaos plays a crucial role, as it leads to the thermalization of the lattice, which then induces the Brownian motion of the particle through resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gaspard, P., Chaos, Scattering and Statistical Mechanics (Cambridge, Cambridge University Press, 1998).

    MATH  Google Scholar 

  2. Gallavotti, G., Chaos 8, 384 (1998).

    Article  MathSciNet  Google Scholar 

  3. I. Prigogine, From being to becoming (Freeman, New York, 1980).

    Google Scholar 

  4. T. Petrosky and I. Prigogine, Physica A 147, 439 (1988).

    Article  MathSciNet  Google Scholar 

  5. R. Balescu Equilibrium and nonequilibrium statistical mechanics, (John Wiley & Sons, 1975).

    Google Scholar 

  6. S. Kim and G. Ordonez, Phys. Rev. E 67, 056117 (2003).

    Article  Google Scholar 

  7. G. Ordonez, T. Petrosky and I. Prigogine, Phys. Rev. A 63, 052106 (2001).

    Article  MathSciNet  Google Scholar 

  8. T. Petrosky, G. Ordonez, and I. Prigogine, Phys. Rev. A 68, 022107 (2003).

    Article  MathSciNet  Google Scholar 

  9. B. A. Tay and G. Ordonez, Phys. Rev. E 73, 016120 (2006).

    Article  MathSciNet  Google Scholar 

  10. Sinai, Y. G., Russ. Math. Surveys 27, 21 (1972).

    Article  MathSciNet  Google Scholar 

  11. Bowen, R. and Ruelle, D., Invent. Math. 2, 181 (1975).

    Article  MathSciNet  Google Scholar 

  12. Gaspard, P. et al, Nature 394, 865 (1998).

    Article  Google Scholar 

  13. Dettmann, C. P. and Cohen, E. G. D., J. Stat. Phys. 101, 775 (2000).

    Article  MathSciNet  Google Scholar 

  14. van Beijeren, H. arXiv:cond-mat/0407730 (2004).

    Google Scholar 

  15. T. Petrosky and I. Prigogine, Chaos, Soliton and Fractals 11, 373 (2000).

    Article  MathSciNet  Google Scholar 

  16. T. Petrosky, I. Prigogine and S. Tasaki, Physica A 173, 175 (1991).

    Article  MathSciNet  Google Scholar 

  17. Livi, R. and Ruffo, S., J. Phys. A 19, 2033 (1986).

    Article  MathSciNet  Google Scholar 

  18. Chernov, N. and Markarian, R., Introduction to the Ergodic Theory of Chaotic Billiards, 2nd Edition (Rio de Janeiro, IMPA, 2003).

    MATH  Google Scholar 

  19. Shannon, C. E. and Weaver, W., The Mathematical Theory of Communication (Urbana, The University of Illinois Press, 1962).

    Google Scholar 

  20. Khintchine, A. I., Mathematical Foundations of Information Theory (New York, Dover Publications, 1957).

    Google Scholar 

  21. Gaspard, P. and Wang, X.-J., Phys. Rep. 235 (6), 321 (1993).

    MathSciNet  Google Scholar 

  22. Cohen, A., Procaccia, I., Phys. Rev. A 31, 1872 (1985).

    Article  Google Scholar 

  23. Dettmann, C. P. and Cohen, E. G. D, and van Beijeren, H., Nature 401 875 (1999).

    Article  Google Scholar 

  24. Alekseev, V. M. and Yakobson, M. V., Phys. Rep. 75 (5), 287 (1981).

    MathSciNet  Google Scholar 

  25. Romero-Bastida, M. and Braun, E., Phys. Rev. E. 65 036228 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Realpe, J., Ordonez, G. (2006). The Role of Chaos and Resonances in Brownian Motion. In: Sengupta, A. (eds) Chaos, Nonlinearity, Complexity. Studies in Fuzziness and Soft Computing, vol 206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31757-0_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-31757-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31756-2

  • Online ISBN: 978-3-540-31757-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics