Skip to main content

Part of the book series: Advances in Soft Computing ((AINSC,volume 34))

  • 1204 Accesses

Abstract

There exists no standard method for obtaining a nonlinear input-output model using external dynamic approach. In this work, we are using an evolutionary optimization method for estimating the parameters of an NFIR model using the Wiener model structure. Specifically we are using a Breeder Genetic Algorithm (BGA) with fuzzy recombination for performing the optimization work. We selected the BGA since it uses real parameters (it does not require any string coding), which can be manipulated directly by the recombination and mutation operators. For training the system we used amplitude modulated pseudo random binary signal (APRBS). The adaptive system was tested using sinusoidal signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Dahleh M. A., E. D. Sontag, D. N. C. Tse, and J. N. Tsitsiklis, 1995, “Worst-case identification of nonlinear fading memory systems”, Automatica, vol. 31, pp. 303–308. http://citeseer.ist.psu.edu/dahleh95worstcase.html

    Article  MathSciNet  Google Scholar 

  • De Falco, I., Delia Cioppa, A., Natale, P., Tarantino, E. (1997), “Artificial Neural Networks Optimization by means of Evolutionary Algorithms”, http://citeseer.nj.nec.com/defalco97artificial.html

    Google Scholar 

  • Deb Kalyanmoy (2002), “Multi-Objective Optimization using Evolutionary Algorithms”, John Wiley & Sons, LTD, New York, USA.

    Google Scholar 

  • Gomez Juan and Baeyens Enrique (2004), “Identification of Multivariable Hammerstein Systems using Rational Orthonormal Bases”, http://citeseer.ist.psu.edu/421047.html.

    Google Scholar 

  • GĂłmez Juan C., Enrique Baeyens (2004), “Identification of Nonlinear Systems using Orthonormal Bases”, http://citeseer.ist.psu.edu/596443.html

    Google Scholar 

  • Guo Fen (2004), “A New Identification Method for Wiener and Hammerstein Systems”, Institut fur Angewandte Informatik, http://bibliothek.fzk.de/zb/berichte/FZKA6955.pdf

    Google Scholar 

  • Ikonen E., Najim K. (1999), “Learning control and modelling of complex industrial processes, Overview report of our activities within the European Science Foundation’s programme on Control of Complex Systems (COSY) Theme 3: Learning control”. http://cc.oulu.fi/~iko/lccs.html

    Google Scholar 

  • Keane Martin A., Koza John R., Rice James P. (1993). Finding an impulse response function using genetic programming. In Proceedings of the 1993 American Control Conference, volume 3, pages 2345–2350, San Francisco, CA, 2.-4. June 1993. IEEE, New York. http://citeseer.ist.psu.edu/keane93finding.html

    Google Scholar 

  • Ljung Lennart (1999), “System Identification. Theory for the User. Second Edition”, Prentice Hall PTR, USA.

    Google Scholar 

  • Nelles Oliver (2001), “Nonlinear System Identification. From Classical Approaches to Neural networks and Fuzzy Models”, Springer-Verlag Berlin Heidelberg. Germany. 2001. pp. 15, 457–511.

    MATH  Google Scholar 

  • Montiel R. Oscar, Oscar Castillo, Roberto Sepilveda, Patricia Melin (2004a), “The evolutionary learning rule for system identification”, Applied Soft Computing Journal. Special issue: Soft Computing for Control of Non-Linear Dynamical Systems. Volume 3, Issue 4. December 2003. pp. 343–352

    Article  Google Scholar 

  • Montiel Oscar, Oscar Castillo, Patricia Melin, Roberto Sepilveda (2004b), “Asynchronous hybrid architecture for parametric system identification using fuzzy real coded evolutionary algorithm”, Nonlinear Studies, Volume 11, Number 1.

    Google Scholar 

  • Mihlenbein Heinz, Dirk Schlierkamp-Voosen (1994), “The science of breeding and its application to the breeder genetic algorithm EGA”. Evolutionary Computation, 1(4):335–360.

    Google Scholar 

  • MĂŒhlenbein Heinz, Evolutionary Algorithms: Theory and Applications, http://citeseer.ist.psu.edu/110687.html.

    Google Scholar 

  • Mihlenbein Heinz and Schilierkamp Voosen (1993), “Predictive Model for Breeder Genetic Algorithm”, Evolutionary Computation. 1(1): 25–49.

    Google Scholar 

  • Narendra K. S. and P. G. Gallman (1996), “An iterative method for the identification of nonlinear systems using a Hammerstein model”. IEEE Transactions on Automatic Control, AC-11:546–550. July 1966.

    Google Scholar 

  • RodrĂ­guez Katya VĂĄzquez, Fonseca Carlos M. Fleming Peter J. (1997). Multiobjective Genetic Programming: A Nonlinear System Identification Application. Late Breaking Papers at the Genetic Programming 1997 Conference, Editor John R. Koza, Standford Bookstore, USA, pp. 207–212.

    Google Scholar 

  • Severance Frank L. (2001), “System Modeling and Simulation. An Introduction”, John Wiley & Sons Ltd., UK.

    Google Scholar 

  • Sjoberg, J., Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.-Y. Glorennec, H. Hjalmarsson and A. Juditsky (1995). “Nonlinear black-box modeling in system identification: a unified overview”. Automatica 31(12), 1691–1724. http://citeseer.nj.nec.com/sjoberg95nonlinear.html

    Article  MathSciNet  Google Scholar 

  • Vijay K. Madisetti, Douglas B. Williams (1997). The Digital Signal Processing Handbook, A CRC Handbook Published in Cooperation with IEEE Press, pp. 15–1, 18–1, 18–12, 20–1, 20–4.

    Google Scholar 

  • Jang J.-S.R., C.-T. Sung, E. Mizutani (1997), “Neuro-Fuzzy and Soft Computing. A Computational Approach to Learning and Machine Intelligence”. Prentice Hall. NJ, USA.

    Google Scholar 

  • Voigt H.M., Mihlenbein, D. Cvetkovic (1995), “Fuzzy Recombination for the Breeder Genetic Algorithm”, Proceedings of the Sixth International Conference on Genetic Algorithms, published by Morgan Kaufmann, pp. 1104–111.

    Google Scholar 

  • Winkler S., Affenzeller M., Wagner S. (2004), “Identifying Nonlinear Model Structures Using Genetic Programming Techniques”. Cybernetics and Systems 2004, pp. 689–694. Austrian Society for Cybernetic Studies, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Montiel, O., Castillo, O., Melin, P., SepĂșlveda, R. (2006). Evolutionary Modeling Using A Wiener Model. In: Abraham, A., de Baets, B., Köppen, M., Nickolay, B. (eds) Applied Soft Computing Technologies: The Challenge of Complexity. Advances in Soft Computing, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31662-0_47

Download citation

  • DOI: https://doi.org/10.1007/3-540-31662-0_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31649-7

  • Online ISBN: 978-3-540-31662-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics