Skip to main content

AC-Driven Transport Through Molecular Wires

  • Chapter
Introducing Molecular Electronics

Part of the book series: Lecture Notes in Physics ((LNP,volume 680))

Abstract

We consider electrical transport properties of a molecular wire under the influence of time-dependent electromagnetic fields. A formalism based on Floquet theory is derived which allows to calculate both the dc current through the molecular wire and the associated noise power. Approximations for the case of a weak wire-lead coupling are studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour: Conductance of a molecular junction, Science 278, 252 (1997)

    Article  Google Scholar 

  2. X.D. Cui, A. Primak, X. Zarate, J. Tomfohr, O.F. Sankey, A.L. Moore, T.A. Moore, D. Gust, G. Harris, S.M. Lindsay: Reproducible measurement of single-molecule conductivity, Science 294, 571 (2001)

    Article  ADS  Google Scholar 

  3. J. Reichert, R. Ochs, D. Beckmann, H.B. Weber, M. Mayor, H. von Löhneysen: Driving current through single organic molecules, Phys. Rev. Lett. 88, 176 804 (2002)

    Article  ADS  Google Scholar 

  4. H.B. Weber, J. Reichert, F. Weigend, R. Ochs, D. Beckmann, M. Mayor, R. Ahlrichs, H. von Löhneysen: Electronic transport through single conjugated molecules, Chem. Phys. 281, 113 (2002)

    Article  Google Scholar 

  5. P. Hänggi, M. Ratner, and S. Yaliraki, Processes in Molecular Wires, Chem. Phys. 281, 111 (2002).

    Article  Google Scholar 

  6. A. Nitzan, M.A. Ratner: Electron transport in molecular wire junctions, Science 300, 1384 (2003)

    Article  ADS  Google Scholar 

  7. J.R. Heath, M.A. Ratner: Molecular electronics, Phys. Today 56 (5), 43 (2003)

    Article  ADS  Google Scholar 

  8. R.M. Metzger: Unimolecular electrical rectifiers, Chem. Rev. 103, 3803 (2003)

    Article  Google Scholar 

  9. M. Di Ventra, N.D. Lang: Transport in nanoscale conductors from first principles, Phys. Rev. B 65, 045 402 (2002)

    Article  ADS  Google Scholar 

  10. J. Heurich, J.C. Cuevas, W. Wenzel, G. Schön: Electrical transport through single-molecule junctions: From molecular orbitals to conduction channels, Phys. Rev. Lett. 88, 256 803 (2002)

    Article  ADS  Google Scholar 

  11. T. Seideman: Current-driven dynamics in molecular-scale devices, J. Phys. C 15, R521 (2003)

    Google Scholar 

  12. T. Seideman, H. Guo: Quantum transport and current-triggered dynamics in molecular tunnel junctions, J. Theo. Comp. Chem. 2, 439 (2003)

    Article  Google Scholar 

  13. V. Mujica, M. Kemp, M.A. Ratner: Electron conduction in molecular wires. I. A scattering formalism, J. Chem. Phys. 101, 6849 (1994)

    Article  ADS  Google Scholar 

  14. D. Segal, A. Nitzan, W.B. Davis, M.R. Wasielewski, M.A. Ratner: Electron transfer rates in bridged molecular systems 2: A steady-state analysis of coherent tunneling and thermal relaxation, J. Phys. Chem. 104, 3817 (2000)

    Google Scholar 

  15. D. Boese, H. Schoeller: Influence of nanomechanical properties on single-electron tunneling: A vibrating single-electron transistor, Europhys. Lett. 54, 668 (2001)

    Article  ADS  Google Scholar 

  16. E.G. Petrov, P. Hänggi: Nonlinear electron current through a short molecular wire, Phys. Rev. Lett. 86, 2862 (2001)

    Article  ADS  Google Scholar 

  17. A. Nitzan: Electron transmission through molecules and molecular interfaces, Annu. Rev. Phys. Chem. 52, 681 (2001)

    Article  ADS  Google Scholar 

  18. G. Cuniberti, G. Fagas, K. Richter: Fingerprints of mesoscopic leads in the conductance of a molecular wire, Chem. Phys 281, 465 (2002)

    Article  Google Scholar 

  19. M.H. Hettler, W. Wenzel, M.R. Wegewijs, H. Schoeller: Current collapse in tunneling transport through benzene, Phys. Rev. Lett. 90, 076 805 (2003)

    Article  ADS  Google Scholar 

  20. S. Kohler, J. Lehmann, P. Hänggi: Driven transport on the nanoscale, Phys. Rep. 406, 379 (2005)

    Article  ADS  Google Scholar 

  21. C.A. Stafford, N.S. Wingreen: Resonant photon-assisted tunneling through a double quantum dot: An electron pump from spatial rabi oscillations, Phys. Rev. Lett. 76, 1916 (1996)

    Article  ADS  Google Scholar 

  22. T. Fujisawa, S. Tarucha: Photon assisted tunnelling in single and coupled quantum dot systems, Superlatt. Microstruct 21, 247 (1997)

    Article  ADS  Google Scholar 

  23. T.H. Oosterkamp, T. Fujisawa, W.G. van der Wiel, K. Ishibashi, R.V. Hijman, S. Tarucha, L.P. Kouwenhoven: Microwave spectroscopy of a quantum-dot molecule, Nature 395, 873 (1998)

    Article  ADS  Google Scholar 

  24. J. Lehmann, S. Kohler, P. Hänggi, A. Nitzan: Molecular wires acting as coherent quantum ratchets, Phys. Rev. Lett. 88, 228–305 (2002)

    Google Scholar 

  25. J. Lehmann, S. Kohler, P. Hänggi, A. Nitzan: Rectification of laser-induced electronic transport through molecules, J. Chem. Phys. 118, 3283 (2003)

    Article  ADS  Google Scholar 

  26. A. Keller, O. Atabek, M. Ratner, V. Mujica: Laser-assisted conductance of molecular wires, J. Phys. B 35, 4981 (2002)

    Article  ADS  Google Scholar 

  27. S. Kohler, J. Lehmann, S. Camalet, P. Hänggi: Resonant laser excitation of molecular wires, Israel J. Chem. 42, 135 (2002)

    Article  Google Scholar 

  28. S. Kohler, J. Lehmann, M. Strass, P. Hänggi: Molecular wires in electromagnetic fields, Adv. Solid State Phys. 44, 151 (2004)

    ADS  Google Scholar 

  29. C. Caroli, R. Combescot, P. Nozieres, D. Saint-James: Direct calculation of the tunneling current, J. Phys. C 4, 916 (1971)

    Article  ADS  Google Scholar 

  30. D.S. Fisher, P.A. Lee: Relation between conductivity and transmission matrix, Phys. Rev. B.23, 6851 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  31. Y. Meir, N.S. Wingreen: Landauer formula for the current through an interacting electron region, Phys. Rev. Lett. 68, 2512 (1992)

    Article  ADS  Google Scholar 

  32. Ya. M. Blanter, M. Büttiker: Shot noise in mesoscopic conductors, Phys. Rep. 336, 1 (2000)

    Article  ADS  Google Scholar 

  33. U. Fano: Ionization yield of radiations. II. The fluctuations of the number of ions, Phys. Rev. 72, 26 (1947)

    Article  ADS  Google Scholar 

  34. A.P. Jauho, N.S. Wingreen, Y. Meir: Time-dependent transport in interacting and noninteracting resonant-tunneling systems, Phys. Rev. B 50, 5528 (1994)

    Article  ADS  Google Scholar 

  35. S. Camalet, J. Lehmann, S. Kohler, P. Hänggi: Current noise in ac-driven nanoscale conductors, Phys. Rev. Lett. 90, 210602 (2003)

    Article  ADS  Google Scholar 

  36. S. Camalet, S. Kohler, P. Hänggi: Shot-noise control in ac-driven nanoscale conductors, Phys. Rev. B. 70, 155–326 (2004)

    Article  Google Scholar 

  37. S. Datta, M.P. Anantram: Steady-state transport in mesoscopic systems illuminated by alternating fields, Phys. Rev. B. 45, 13761 (1992)

    Article  ADS  Google Scholar 

  38. S. Datta: Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  39. M. Wagner: Probing Pauli blocking factors in quantum pumps with broken time-reversal symmetry, Phys. Rev. Lett. 85, 174 (2000)

    Article  ADS  Google Scholar 

  40. H. Sambe: Steady states and quasienergies of a quantum-mechanical system in an oscillating field, Phys. Rev. A. 7, 2203 (1973)

    Article  ADS  Google Scholar 

  41. M. Grifoni, P. Hänggi: Driven quantum tunneling, Phys. Rep. 304, 229 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Buchleitner, D. Delande, J. Zakrzewski: Non-dispersive wave packets in periodically driven quantum systems, Phys. Rep. 368, 409 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. J.H. Shirley: Solution of the Schrodinger equation with a Hamiltonian periodic in time, Phys. Rev. 138, B979 (1965)

    Article  ADS  Google Scholar 

  44. P. Jung, P. Hänggi: Resonantly driven Brownian motion: Basic concepts and exact results, Phys. Rev. A. 41, 2977 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  45. J. Lehmann, S. Kohler, V. May, P. Hänggi: Vibational effects in laser-driven molecular wires, J. Chem. Phys. 121, 2278 (2004)

    Article  ADS  Google Scholar 

  46. M.A. Ratner: Bridge-assisted electron transfer: Effective electronic coupling, J. Phys. Chem. 94, 4877 (1990)

    Article  Google Scholar 

  47. J. Lehmann, S. Camalet, S. Kohler, P. Hänggi: Laser controlled molecular switches and transistors, Chem. Phys. Lett. 368, 282 (2003)

    Article  ADS  Google Scholar 

  48. S. Kohler, S. Camalet, M. Strass, J. Lehmann, G.L. Ingold, P. Hänggi: Charge transport through a molecule driven by a high-frequency field, Chem. Phys. 296, 243 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Hänggi, P., Kohler, S., Lehmann, J., Strass, M. (2006). AC-Driven Transport Through Molecular Wires. In: Cuniberti, G., Richter, K., Fagas, G. (eds) Introducing Molecular Electronics. Lecture Notes in Physics, vol 680. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31514-4_3

Download citation

Publish with us

Policies and ethics