Skip to main content

Architectures and Simulations for Nanoprocessor Systems Integrated on the Molecular Scale

  • Chapter
Introducing Molecular Electronics

Part of the book series: Lecture Notes in Physics ((LNP,volume 680))

Abstract

This chapter concerns the design, development, and simulation of nanoprocessor systems integrated on the molecular scale. It surveys ongoing research and development on nanoprocessor architectures and discusses challenges in the implementation of such systems. System simulation is used to identify some advantages, issues, and trade-offs in potential implementations. Previously, the authors and their collaborators considered in detail the requirements and likely performance of nanomemory systems. This chapter recapitulates the essential aspects of that earlier work and builds upon those efforts to examine the likely architectures and requirements of nanoprocessors. For nanoprocessor systems, simulation, as well as design and fabrication, embodies unique problems beyond those introduced by the large number of densely-packed, novel nanodevices. For example, unlike the largely homogeneous structure of circuitry in nanomemory arrays, a high degree of variety and inhomogeneity must be present in nanoprocessors. Also, issues of clocking, signal restoration, and power become much more significant. Thus, building and operating nanoprocessor systems will present significant new challenges and require additional innovations in the application of molecular-scale devices and circuits, beyond those already achieved for nanomemories. New nanoelectronic devices, circuits, and architectures will be necessary to perform the more complex and specialized functions inherent in processing systems at the nanometer scale. This chapter highlights the fundamental design requirements of such nanoprocessor systems, presents various device and design options, and discusses their potential implications for system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. S. Kwok, J. C. Ellenbogen: Moletronics: future electronics, Materials Today 5, 28–37 (2002).

    Article  Google Scholar 

  2. J. R. Heath: Wires, switches, and wiring. A route toward a chemically assembled electronic nanocomputer, Pure Appl. Chem. 72, 11–20 (2000).

    Article  Google Scholar 

  3. N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, J. R. Heath: Ultrahigh-density nanowire lattices and circuits, Science 300, 112–115 (2003).

    Article  ADS  Google Scholar 

  4. P. J. Kuekes, J. R. Heath, R. S. Williams: Molecular wire crossbar memory, United States Patent 6,128,214 (2000).

    Google Scholar 

  5. D. Whang, S. Jin, Y., Wu, C. M. Lieber: Large-scale hierarchical organization of nanowire arrays for integrated nanosystems, Nano Lett. 3, 1255–1259 (2003).

    Article  ADS  Google Scholar 

  6. Y. Chen, G. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, R. S. Williams: Nanoscale molecular-switch crossbar circuits, Nanotechnology 14, 462–468 (2003).

    Article  ADS  Google Scholar 

  7. G. Snider, P. Kuekes, R. S. Williams: CMOS-like logic in defective, nanoscale crossbars, Nanotechnology 15 (2004).

    Google Scholar 

  8. Overview of the DARPA Moletronics Program at http://www.darpa.mil/ MTO/mole/.

    Google Scholar 

  9. Overview of the DARPA MoleApps Program at http://www.darpa.mil/ dso/thrust/ matdev/moleapps.htm.

    Google Scholar 

  10. J. Tomfohr, G. Ramachandran, O. F. Sankey, S. M. Lindsay: Making contacts to single molecules: Are we there yet?, Lect. Notes Phys.: Intro. Mol. Elect. (2005).

    Google Scholar 

  11. W. Wang, T. Lee, M. Reed: Intrinsic electronic conduction mechanisms in self-assembled monolayers, Lect. Notes Phys.: Intro. Mol. Elect. (2005).

    Google Scholar 

  12. J. van Ruitenbeek, E. Scheer, H. B. Weber: Contacting individual molecules using mechanically controllable break junctions, Lect. Notes Phys.: Intro. Mol. Elect. (2005).

    Google Scholar 

  13. R. M. Metzger: Six unimolecular rectifiers and what lies ahead, Lect. Notes Phys.: Intro. Mol. Elect. (2005).

    Google Scholar 

  14. J. C. Ellenbogen, J. C. Love: Architectures for molecular electronic computers: 1. logic structures and an adder designed from molecular electronic diodes, Proc. IEEE 88, 386–426 (2000).

    Article  Google Scholar 

  15. M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, J. M. Tour: Conductance of a molecular junction, Science 278, 252–254 (1997).

    Article  Google Scholar 

  16. C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams, J. R. Heath: Electronically configurable molecular-based logic gates, Science 285, 391–394 (1999).

    Article  Google Scholar 

  17. C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, J. R. Heath: A [2]catenane-based solid state electronically reconfigurable switch, Science 289, 1172–1175 (2000).

    Article  ADS  Google Scholar 

  18. J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour: Large on-off ratios and negative differential resistance in a molecular electronic device, Science 286, 1550–1552 (1999).

    Article  Google Scholar 

  19. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, C. M. Lieber: Logic gates and computation from assembled nanowire building blocks, Science 294, 1313–1317 (2001).

    Article  ADS  Google Scholar 

  20. A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker: Logic circuits with carbon nanotube transistors, Science 294, 1317–1320 (2001).

    Article  ADS  Google Scholar 

  21. Y. Luo, C. P. Collier, J. O. Jeppesen, K. A. Nielson, E. Delonno, G. Ho, J. Perkins, H. Tseng, T. Yamamoto, J. F. Stoddart, J. R. Heath: Two-dimensional molecular electronics circuits, Chem. Phys. Chem. 3, 519–525 (2002).

    Google Scholar 

  22. M. M. Ziegler, C. A. Picconatto, J. C. Ellenbogen, A. DeHon, D. Wang, Z. H. Zhong, C. M. Lieber: Scalability simulations for nanomemory systems integrated on the molecular scale, in Molecular Electronics III (2003), Vol. 1006 of Ann. N.Y. Acad. Sci., pp. 312–330.

    Article  ADS  Google Scholar 

  23. A. DeHon: Array-based architecture for FET-based, nanoscale electronics, IEEE TNANO 2, 23–32 (2003).

    Google Scholar 

  24. A. DeHon, P. Lincoln, J. E. Savage: Stochastic assembly of sublithographic nanoscale interfaces, IEEE TNANO 2, 165–174 (2003).

    Google Scholar 

  25. A. DeHon, M. J. Wilson: Nanowire-based sublithographic programmable logic arrays, in Proc. ACM/SIGDA FPGA (ACM Press, Monterey, CA, 2004), pp. 123–132.

    Google Scholar 

  26. B. Zeidman: Designing with FPGAs and CPLDs (CMP Books, Lawrence, KS, 2002).

    Google Scholar 

  27. M. Barr: Programmable logic: What's it to ya?, Embedded Systems Programming pp. 75–84 (1999). Also available online at http://www.embedded.com/ 1999/9906/ 9906sr.htm.

    Google Scholar 

  28. J. M. Tour, L. Cheng, D. P. Nackashi, Y. X. Yao, A. K. Flatt, S. K. S. Angelo, T. E. Mallouk, P. D. Franzon: Nanocell electronic memories, J. Am. Chem. Soc. 125, 13 279–13 283 (2003).

    Google Scholar 

  29. A. Fijany, B. N. Toomarian: New design for quantum dots cellular automata to obtain fault tolerant logic gates, J. Nanop. Res. 3, 27–37 (2001).

    Article  Google Scholar 

  30. C. S. Lent, B. Isaksen: Clocked molecular quantum-dot cellular automata, IEEE Trans. Elect. Dev 50, 1890–1896 (2003).

    Article  ADS  Google Scholar 

  31. C. S. Lent, B. Isaksen, M. Lieberman: Molecular quantum-dot cellular automata, J. Am. Chem. Soc. 125, 1056–1063 (2003).

    Article  Google Scholar 

  32. C. S. Lent, P. D. Tougaw: Device architecture for computing with quantum dots, Proc. IEEE 85, 541–557 (1997).

    Article  Google Scholar 

  33. W. Porod, C. S. Lent, G. H. Bernstein, A. O. Orlov, I. Amlani, G. L. Snider, J. L. Merz: Quantum-dot cellular automata: computing with coupled quantum dots, Intl. J. Elect. 86, 549–590 (1999).

    Article  Google Scholar 

  34. Y. Huang, X. Duan, Q. Wei, C. M. Lieber: Directed assembly of one-dimensional nanostructures into functional networks, Science 291, 630–633 (2001).

    Article  ADS  Google Scholar 

  35. A. B. Greytak, L. J. Lauhon, M. S. Gudiksen, C. M. Lieber: Growth and transport properties of complementary germanium nanowire field-effect transistors, Appl. Phys. Lett. 84, 4176–4178 (2004).

    Article  ADS  Google Scholar 

  36. Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber: High performance silicon nanowire field effect transistors, Nano Lett. 3, 149–152 (2003).

    Article  ADS  Google Scholar 

  37. H. Naeimi, A. DeHon: A greedy algorithm for tolerating defective crosspoints in nano PL A design, in Proc. IEEE Intl. Conf. Field Prog. Tech. (2004).

    Google Scholar 

  38. J. M. Rabaey, A. P. Chandrakasan, B. Nikolic: Digital Integrated Circuits, 2nd edn. (Prentice-Hall, Inc., Englewood Cliffs, NJ, 2002).

    Google Scholar 

  39. E. Thune, C. Strunk: Quantum transport in carbon nanotubes, Lect. Notes Phys.: Intro. Mol. Elect. (2005).

    Google Scholar 

  40. J. Jortner, A. Nitzan, M. A. Ratner: Foundation of molecular electronics -charge transport in molecular conduction junctions, Lect. Notes Phys.: Intro. Mol. Elect. (2005).

    Google Scholar 

  41. P. Hanggi, S. Kohler, J. Lehmann, M. Strass: AC-driven transport through molecular wires, Lect. Notes Phys.: Intro. Mol. Elect. (2005).

    Google Scholar 

  42. R. DiFelice, A. Calzolari, D. Versano, A. Rubio: Electronic structure calculations for nanomolecular systems, Lect. Notes Phys.: Intro. Mol. Elect. (2005).

    Google Scholar 

  43. K. Stokbro, J. Taylor, M. Brandbyge, H. Guo: Ab-initio based nonequilibrium Green's function formalism for calculating electron transport in molecular devices, Lect. Notes Phys.: Intro. Mol. Elect. (2005).

    Google Scholar 

  44. A. DiCaarlo, A. Pecchia, L. Latessa, T. Frauenheim, G. Seifert: Tight-binding DFT for molecular electronics (gDFTB), Lect. Notes Phys.: Intro. Mol. Elect. (2005).

    Google Scholar 

  45. N. Bushong, M. DiVentra: Current-induced effects in nanoscale conductors, Lect. Notes Phys.: Intro. Mol. Elect. (2005).

    Google Scholar 

  46. M. Wegewijs, M. H. Hettler, J. Konig, A. Thielmann, C. Romeike, K. Nowack: Single electron tunneling in small molecules, Lect. Notes Phys.: Intro. Mol. Elect. (2005).

    Google Scholar 

  47. M. Thorwart, M. Grifoni, R. Egger: Transport through intrinsic quantum dots in interacting carbon nanotubes, Lect. Notes Phys.: Intro. Mol. Elect. (2005).

    Google Scholar 

  48. L. A. Bumm, J. J. Arnold, M. T. Cygan, T. D. Dunbar, T. P. Burgin, L. Jones, D. L. Allara, J. M. Tour, P. S. Weiss: Are single molecular wires conducting?, Science 271, 1705–1707 (1996).

    Article  ADS  Google Scholar 

  49. Y. Selzer, M. A. Cabassi, T. S. Mayer, D. L. Allara: Temperature effects on conduction through a molecular junction, Nanotechnology 15, S483–S488 (2004).

    Article  ADS  Google Scholar 

  50. R. M. Metzger: All about (N-hexadecylquinolin-4-ium-1-yl) methylidenet-ricyanoquinodimethanide, a unimolecular rectifier of electrical current, J. Mater. Chem. 10, 55–62 (2000).

    Article  Google Scholar 

  51. P. J. Kuekes, D. R. Stewart, R. S. Williams: The crossbar latch: Logic value storage, restoration, and inversion in crossbar circuits, J. Appl. Phys. 97 (2005).

    Google Scholar 

  52. S. J. Tans, A. R. M. Verschueren, C. Dekker: Room-temperature transistor based on a single carbon nanotube, Nature 393, 49–52 (1998).

    Article  ADS  Google Scholar 

  53. H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker: Carbon nanotube single-electron transistors at room temperature, Science 293, 76–79 (2001).

    Article  ADS  Google Scholar 

  54. S. Heinze, J. Tersoff, P. Avouris: Carbon nanotube electronics and optoelectronics, Lect. Notes Phys.: Intro. Mol. Elect. (2005).

    Google Scholar 

  55. J. C. Ellenbogen: Monomolecular electronic device, United States Patent 6,339,227, issued to the MITRE Corporation (2002).

    Google Scholar 

  56. J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. McEuen, D. C. Ralph: Coulomb blockade and the Kondo effect in single-atom transistors, Nature 417, 722–725 (2002).

    Article  ADS  Google Scholar 

  57. W. Liang, M. P. Shores, M. Bockrath, J. R. Long, H. Park: Kondo resonance in a single-molecule transistor, Nature 417, 725–729 (2002).

    Article  ADS  Google Scholar 

  58. J. L. Hennessy, D. A. Patterson: Computer Architecture: A Quantitative Approach, 3rd edn. (Morgan Kaufmann, San Mateo, CA, 2002).

    MATH  Google Scholar 

  59. J. R. Heath, P. J. Kuekes, G. S. Snider, R. S. Williams: A defect-tolerant computer architecture: Opportunities for nanotechnology, Science 280, 1716–1721 (1998).

    Article  Google Scholar 

  60. G. L. Snider, A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, J. L. Merz, W. Porod: Quantum-dot cellular automata: Line and majority logic gate, Japanese J. Appl. Phys. Part 1 38, 7227–7229 (1999).

    Article  Google Scholar 

  61. V. P. Roychowdhury, D. B. Janes, S. Bandyopadhyay: Nanoelectronic architecture for Boolean logic, Proc. IEEE 85, 574–588 (1997).

    Article  Google Scholar 

  62. G. Toth, C. S. Lent, P. D. Tougaw, Y. Brazhnik, W. W. Weng, W. Porod, R. W. Liu, Y. F. Huang: Quantum cellular neural networks, Superlattices and Microstructures 20, 473–478 (1996).

    Article  ADS  Google Scholar 

  63. O. Turel, J. H. Lee, X. Ma, K. K. Likharev: Neuromorphic architectures for nanoelectronic circuits, Int. J. Circ. Theor. Appl. 32, 277–302 (2004).

    Article  Google Scholar 

  64. C. P. Husband, S. M. Husband, J. S. Daniels, J. M. Tour: Logic and memory with nanocell circuits, IEEE Trans. Elect. Dev. 50, 1865–1875 (2003).

    Article  ADS  Google Scholar 

  65. J. M. Tour, W. L. van Zandt, C. P. Husband, S. M. Husband, L. S. Wilson, P. D. Franzon, D. P. Nackashi: Nanocell logic gates for molecular computing, IEEE TNANO 1, 100–109 (2002).

    Google Scholar 

  66. S. C. Goldstein, M. Budiu: Nanofabrics: Spatial computing using molecular electronics, in Proc. Intl. Symp. Comp. Arch. (2001).

    Google Scholar 

  67. M. R. Stan, P. D. Franzon, S. C. Goldstein, J. C. Lach, M. M. Ziegler: Molecular electronics: From devices and interconnect to circuits and architecture, Proc. IEEE 91, 1940–1957 (2003).

    Article  Google Scholar 

  68. G. S. Rose, M. R. Stan: (2005), Programmable logic using molecular devices in a three-dimensional architecture, presentation at the Engr. Intl. Conf. on Mol. Elect., San Diego, CA (unpublished).

    Google Scholar 

  69. K. K. Likharev, D. B. Strukov: CMOL: Devices, circuits, and architectures, Lect. Notes Phys.: Intro. Mol. Elect. (2005).

    Google Scholar 

  70. D. B. Strukov, K. K. Likharev: CMOL FPGA: A reconfigurable architecture for hybrid digital circuits with two-terminal devices, submitted for publication (2005).

    Google Scholar 

  71. J. Han: Fault-tolerant architectures for nanoelectronic and quantum devices, Ph.D. thesis, Delft University of Technology, Delft, The Netherlands (2004).

    Google Scholar 

  72. V. Beiu: A novel highly reliable low-power nano architecture when von Neumann augments Kolmogorov, in Proc. IEEE Intl. Conf. on App. Spec. Sys., Arch. and Proc. (ASAP) (2004).

    Google Scholar 

  73. S. Trimberger (Ed.): Field Programmable Gate Array Technology (Kluwer Academic Publishers, Boston, 1994).

    MATH  Google Scholar 

  74. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou: Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography, Appl. Phys. Lett. 84, 5299–5301 (2004).

    Article  ADS  Google Scholar 

  75. G. Y. Jung, S. Ganapathiappan, D. A. A. Ohlberg, D. L. Olynick, Y. Chen, W. M. Tong, R. S. Williams: Fabrication of a 34 x 34 crossbar structure at 50 nm half-pitch by UV-based nanoimprint lithography, Nano Lett. 4, 1225–1229 (2004).

    Article  ADS  Google Scholar 

  76. Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, C. M. Lieber: Nanowire crossbar arrays as address decoders for integrated nanosystems, Science 302, 1377–1379 (2003).

    Article  ADS  Google Scholar 

  77. A. DeHon: Reconfigurable architectures for general-purpose computing, Technical Report AITR-1586, Massachusetts Institute of Technology (1996).

    Google Scholar 

  78. P. S. Zuchowski, C. B. Reynolds, R. J. Grupp, S. G. Davis, B. Cremen, B. Troxel: A hybrid ASIC and FPGA architecture, in Proc. Intl. Conf. Comp. Aid. Des. pp. 187–194, (2002).

    Google Scholar 

  79. M. M. Ziegler, M. R. Stan: CMOS/nano co-design for crossbar-based molecular electronic systems, IEEE TNANO (2003).

    Google Scholar 

  80. M. Forshaw, R. Stadler, D. Crawley, K. Nikolic: A short review of nanoelec-tronic architectures, Nanotechnology 15, S220–S223 (2004).

    Article  ADS  Google Scholar 

  81. R. P. McConnell: Diode-based power gain for molecular-scale electronic digital computers, report MP 00W0000310, The MITRE Corporation, McLean, VA (2000).

    Google Scholar 

  82. R. P. McConnell, J. C. Ellenbogen, T. S. Mayer, T. E. Mallouk, S. P. Goldstein: Requirements and designs for molecular computer architectures that incorporate gain-producing elements, presentation at the Engr. Found. Conf. on Mol. Elect., Kona, HI (unpublished) (2000).

    Google Scholar 

  83. S. C. Goldstein, D. Rosewater: Digital logic using molecular electronics, in Proc. Intl. Sol. St. Circ. Conf. (2002).

    Google Scholar 

  84. G. S. Rose, M. R. Stan: Memory arrays based on molecular RTD devices, in Proc. IEEE-NANO pp. 453–456, (2003).

    Google Scholar 

  85. E. Goto, K. Murata, K. Nakazawa, K. Nakagawa, T. Moto-Oka, Y. Matsuoka, Y. Ishibashi, T. Soma, E. Wada: Esaki diode high speed logical circuits, IRE Trans. Elect. Comp. pp. 25–29 (1960).

    Google Scholar 

  86. H. C. Liu, T. C. L. G. Sollner: High-frequency resonant-tunneling devices, in Semiconductors and Semimetals, ed. by R. A. Kiehl, T. C. L. G. Sollner, Vol. 41 (Academic Press, Boston, 1994), pp. 359–418.

    Google Scholar 

  87. R. H. Mathews, J. P. Sage, T. C. L. G. Sollner, S. D. Calawa, C.-L. Chen, L. J. Mahoney, P. A. Maki, K. M. Molvar: A new RTD-FET logic family, Proc. IEEE 87, 596–605 (1999).

    Article  Google Scholar 

  88. P. J. Kuekes: Molecular crossbar latch, United States Patent 6,586,965 (2003).

    Google Scholar 

  89. Y. Chen, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, D. L. Olynick, E. Anderson: Nanoscale molecular-switch devices fabricated by imprint lithography, Appl. Phys. Lett. 82, 1610–1612 (2003).

    Article  ADS  Google Scholar 

  90. P. J. Kuekes, R. S. Williams: in press.

    Google Scholar 

  91. M. van den Brink: Litho roadmap shows difficult terrain - part 2 - technology information, Electronic News, Jan. 17, 2000.

    Google Scholar 

  92. Semi industry to reach $360 billion by 2010, says report, Silicon Strategies, Dec. 2, 2003.

    Google Scholar 

  93. A. W. Burks, H. H. Goldstine, J. von Neumann: Preliminary discussion of the logical design of an electronic computing instrument, in John von Neumann Collected Works, ed. by A. H. Taub, Vol. V (The Macmillan Co., New York, 1963), pp. 34–79.

    Google Scholar 

  94. H. H. Goldstine, J. von Neumann: On the principles of large scale computing machines, in John von Neumann Collected Works, ed. by A. H. Taub, Vol. V (The Macmillan Co., New York, 1963), pp. 1–32.

    Google Scholar 

  95. J. von Neumann: First draft of a report on the EDVAC, in From ENIAC to Univac: An Appraisal of the Eckert-Mauchly Computers , ed. by N. Stern (Digital Press, Bedford, MA, 1981).

    Google Scholar 

  96. Reprinted from the AMD Virtual Pressroom at http://www.amd.com.

    Google Scholar 

  97. Semiconductor Industry Association: International technology roadmap for semiconductors: 2003 edition, Technical report, SEMATECH (2003).

    Google Scholar 

  98. J. D. Meindl, Q. Chen, J. A. Davis: Limits on silicon nanoelectronics for terascale integration, Science 293, 2044–2049 (2001).

    Article  ADS  Google Scholar 

  99. V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, G. I. Bourianoff: Limits to binary logic switch scaling - a gedanken model, Proc. IEEE 91, 1934–1939 (2003).

    Article  Google Scholar 

  100. D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, H. S. P. Wong: Device scaling limits of Si MOSFETs and their application dependencies, Proc. IEEE 89, 259–288 (2001). This article is one of several that appeared in a Special Issue on Limits of Semiconductor Technology.

    Article  Google Scholar 

  101. M. T. Bohr: Nanotechnology goals and challenges for electronic applications, IEEE TNANO 1, 56–62 (2002).

    Google Scholar 

  102. J. A. Davis, R. Venkatesan, A. Kaloyeros, M. Beylansky, S. J. Souri, K. Banerjee, K. C. Saraswat, A. Rahman, R. Reif, J. D. Meindl: Interconnect limits on gigascale integration (GSI) in the 21st century, Proc. IEEE 89, 305–324 (2001). This article is one of several that appeared in a Special Issue on Limits of Semiconductor Technology.

    Article  Google Scholar 

  103. M. Ieong, B. Doris, J. Kedzierski, K. Rim, M. Yang: Silicon device scaling to the sub-10-nm regime, Science 306, 2057–2060 (2004).

    Article  ADS  Google Scholar 

  104. A. Rahman: System-level performance evaluation of three-dimensional integrated circuits, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (2001).

    Google Scholar 

  105. R. Reif, A. Fan, K.-N. Chen, S. Das: Fabrication technologies for three-dimensional integrated circuits, in Proc. Intl. Symp. Qual. Elect. Des. pp. 33–37, (2002).

    Google Scholar 

  106. S. F. Al-Sarawi, D. Abbott, P. D. Franzon: A review of 3-D packaging technology, IEEE Trans. CPMT B 21, 2–14 (1998).

    Google Scholar 

  107. A. Fan, A. Rahman, R. Reif: Copper wafer bonding, Elect. Sol. St. Lett. 2, 534–536 (1999).

    Article  Google Scholar 

  108. J. A. Burns, C. Keast, K. Warner, P. Wyatt, D. Yost: Fabrication of 3-dimensional integrated circuits by layer transfer of fully depleted SOI circuits, in Proc. Mat. Res. Soc. Symp. GVol. 768 (2003).

    Google Scholar 

  109. Y. Kwon, A. Jindal, J. J. McMahon, J.-Q. Lu, R. J. Gutmann, T. S. Cale: Dielectric glue wafer bonding for 3-D ICs, in Proc. Mat. Res. Soc. (Spring 2003).

    Google Scholar 

  110. L. Xue, C. C. Liu, H. S. Kim, S. Kim, S. Tiwari: Three-dimensional integration: Technology, use, and issues for mixed-signal applications, IEEE Trans. Elect. Dev. 50, 601–609 (2003).

    Article  ADS  Google Scholar 

  111. V. Subramanian, P. Dankoski, L. Degertekin, B. T. Khuri-Yakub, K. C. Saraswat: Controlled two-step solid-phase crystallization for high-performance polysilicon TFT's, IEEE Elect. Dev. Lett. 18, 378–381 (1997).

    Article  ADS  Google Scholar 

  112. S. Das: Design automation and analysis of three-dimensional integrated circuits, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (2004).

    Google Scholar 

  113. R. Chau, B. Boyanov, B. Doyle, M. Doczy, S. Datta, S. Hareland, D. Jin, J. Kavalieros, M. Metz: Silicon nanotransistors for logic applications, Physica E: Low-dimensional Systems and nanostructures 19, 1–5 (2003).

    Article  ADS  Google Scholar 

  114. S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, P. Avouris: Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes, Appl. Phys. Lett. 80, 3817–3819 (2002).

    Article  ADS  Google Scholar 

  115. Z. M. Liu, A. A. Yasser, J. S. Lindsey, D. F. Bocian: Molecular memories that survive silicon device processing and real-world operation, Science 302, 1543–1545 (2003).

    Article  ADS  Google Scholar 

  116. C. Li, W. Fan, B. Lei, D. Zhang, S. Han, T. Tang, X. Liu, Z. Liu, S. Asano, M. Meyyappan, J. Han, C. Zhou: Multilevel memory based on molecular devices, Appl. Phys. Lett. 84, 1949–1951 (2004).

    Article  ADS  Google Scholar 

  117. Q. L. Li, S. Surthi, G. Mathur, S. Gowda, Q. Zhao, T. A. Sorenson, R. C. Tenent, K. Muthukumaran, J. S. Lindsey, V. Misra: Multiple-bit storage properties of porphyrin monolayers on SiO2, Appl. Phys. Lett. 85, 1829–1831 (2004).

    Article  ADS  Google Scholar 

  118. B. J. Feder: Nanotech memory chips might soon be a reality, New York Times, June 7, 2004.

    Google Scholar 

  119. E. Kusse: Analysis and circuit design for low power programmable logic modules, M.S. thesis, Univ. of California, Berkeley, CA (1997).

    Google Scholar 

  120. A. S. Blum, C. M. Soto, C. D. Wilson, J. D. Cole, M. Kim, B. Gnade, A. Chat-terji, W. F. Ochoa, T. W. Lin, J. E. Johnson, B. R. Ratna: Cowpea mosaic virus as a scaffold for 3-D patterning of gold nanoparticles, Nano Lett. 4, 867–870 (2004).

    Article  ADS  Google Scholar 

  121. J. Y. Fang, C. M. Soto, T. W. Lin, J. E. Johnson, B. Ratna: Complex pattern formation by cowpea mosaic virus nanoparticles, Langmuir 18, 308-310 (2002).

    Article  Google Scholar 

  122. P. Beckett, A. Jennings: Towards nanocomputer architecture, in Proc. ACS Conf. Res. Prac. Inf. Tech. Vol. 6 pp. 141–150, (2002).

    Google Scholar 

  123. N. Weste, K. Eshraghian: Principles of CMOS VLSI Design, 2nd edn. (Addison-Wesley Publishing Company, Reading, MA, 1994).

    Google Scholar 

  124. Cadence Design Framework II, Version IC 5.0.33, Cadence Design Systems, Inc., San Jose, CA, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Das, S., Rose, G., Ziegler, M.M., Picconatto, C.A., Ellenbogen, J.C. (2006). Architectures and Simulations for Nanoprocessor Systems Integrated on the Molecular Scale. In: Cuniberti, G., Richter, K., Fagas, G. (eds) Introducing Molecular Electronics. Lecture Notes in Physics, vol 680. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31514-4_18

Download citation

Publish with us

Policies and ethics