Skip to main content

Carbon Nanotube Electronics and Optoelectronics

  • Chapter
Introducing Molecular Electronics

Part of the book series: Lecture Notes in Physics ((LNP,volume 680))

Abstract

Carbon nanotube field-effect transistors (CNFETs) are already competitive in some respects with state-of-the-art silicon transistors, and are promising candidates for future nanoelectronic devices. However, it is dificult to form ohmic contacts to carbon nanotubes, and most of the CNFETs reported to date operate as Schottky barrier transistors rather than conventional FETs. The electrostatics at the contact of a metal to a nanotube leads to device behavior very different from conventional transistors. In this article we discuss the consequences of Schottky barriers in CNFETs with respect to the scaling of transistor performance with reduced device size and the application of CNFETs as optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris: Carbon nanotubes: synthesis, structure, properties, and applications, Springer-Verlag, Berlin 2001.

    Book  Google Scholar 

  2. S. J. Tans, A. Verschueren, C. Dekker: Room-temperature transistor based on a single carbon nanotube, Nature (London) 393, 49 (1998).

    Article  ADS  Google Scholar 

  3. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, Ph. Avouris: Single- and multiwall carbon nanotube transistors, Appl. Phys. Lett. 73, 2447 (1998).

    Article  ADS  Google Scholar 

  4. S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, Ph. Avouris: Fabrication and electrical characterization of top gate single-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 80, 3817 (2002).

    Article  ADS  Google Scholar 

  5. A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, H. Dai: High-k dielectrics for advanced carbon-nanotube transistors and logic gates, Nature Materials 1, 241 (2002).

    Article  ADS  Google Scholar 

  6. A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai: Ballistic carbon nanotube field-effect transistors, Nature 424, 654 (2003).

    Article  ADS  Google Scholar 

  7. S. J. Wind, J. Appenzeller, Ph. Avouris: Lateral Scaling in Carbon-Nanotube Field-Effect Transistors, Phys. Rev. Lett. 91, 058301 (2003).

    Article  ADS  Google Scholar 

  8. V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris: Carbon Nanotube Interand Intramolecular Logic Gates, Nano Lett. 1, 453 (2001).

    Article  ADS  Google Scholar 

  9. R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. K. Chan, J. Tersoff, Ph. Avouris: Ambipolar Electrical Transport in Semiconducting Single-Wall Carbon Nanotubes, Phys. Rev. Lett. 87, 256805–1 (2001).

    Article  ADS  Google Scholar 

  10. A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker: Logic circuits with carbon nanotube transistors, Science 294, 1317 (2001).

    Article  ADS  Google Scholar 

  11. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, Ph. Avouris: Carbon Nanotubes as Schottky Barrier Transistors, Phys. Rev. Lett. 89, 106801 (2002).

    Article  ADS  Google Scholar 

  12. T. Nakanishi, A. Bachtold, C. Dekker: Transport through the interface between a semiconducting carbon nanotube and a metal electrode, Phys. Rev. B 66, 073307 (2002).

    Article  ADS  Google Scholar 

  13. J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S. J. Wind, Ph. Avouris: Field-Modulated Carrier Transport in Carbon Nanotube Transistors, Phys. Rev. Lett. 89, 126801 (2002).

    Article  ADS  Google Scholar 

  14. S. Heinze, M. Radosavljević, J. Tersoff, Ph. Avouris: Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors, Phys. Rev. B 68, 235418 (2003).

    Article  ADS  Google Scholar 

  15. J. Misewich, R. Martel, Ph. Avouris, J. C. Tsang, S. Heinze, J. Tersoff: Electrically induced optical emission from a carbon nanotube FET, Science 300, 783 (2003).

    Article  ADS  Google Scholar 

  16. J. Tersoff: Schottky Barrier Heights and the Continuum of Gap States, Phys. Rev. Lett. 52, 465 (1984) and Schottky barriers and semiconductor band structures, Phys. Rev. B 32, 6968 (1985).

    Article  ADS  Google Scholar 

  17. F. Léonard, J. Tersoff: Role of Fermi-Level Pinning in Nanotube Schottky Diodes Phys. Rev. Lett. 84, 4693 (2000).

    Article  ADS  Google Scholar 

  18. V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris: Controlling doping and carrier injection in carbon nanotube transistors, Appl. Phys. Lett. 80, 2773 (2002).

    Article  ADS  Google Scholar 

  19. M. Freitag, M. Radosavljević, Y. Zhou, A. T. Johnson, W. F. Smith: Controlled creation of a carbon nanotube diode by a scanned gate, Appl. Phys. Lett. 79, 3326 (2001).

    Article  ADS  Google Scholar 

  20. J. R. Tucker, C. Wang, P. S. Carney: Silicon field-effect transistor based on quantum tunneling, Appl. Phys. Lett. 65, 618 (1994).

    Article  ADS  Google Scholar 

  21. A. Javey, Q. Wang, W. Kim, H. Dai: Advancements in Complementary Carbon Nanotube Field-Effect Transistors, IEDM Tech. Digest. 741 (2003).

    Google Scholar 

  22. A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. Wang, R. G. Gordon, M. Lundstrom, H. Dai: Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-Gate Dielectrics, Nano Lett. 4, 447 (2004).

    Article  ADS  Google Scholar 

  23. Y.-M. Lin, J. Appenzeller, and Ph. Avouris: Novel Carbon Nanotube FET Design with Tunable Polarity, IEDM Tech. Digest. (in press).

    Google Scholar 

  24. M. Freitag, Y. Martin, J. Misewich, R. Martel, Ph. Avouris: Photoconductivity of Single Carbon Nanotubes, Nano Lett. 3, 1067 (2003).

    Article  ADS  Google Scholar 

  25. F. Léonard, J. Tersoff: Novel Length Scales in Nanotube Devices, Phys. Rev. Lett. 83, 5174 (1999).

    Article  ADS  Google Scholar 

  26. A. A. Odintsov: Schottky Barriers in Carbon Nanotube Heterojunctions, Phys. Rev. Lett. 85, 150 (2000).

    Article  ADS  Google Scholar 

  27. J. W. Mintmire, C. T. White: Universal Density of States for Carbon Nanotubes, Phys. Rev. Lett. 81, 2506 (1998).

    Article  ADS  Google Scholar 

  28. F. Léonard, J. Tersoff: Dielectric response of semiconducting carbon nanotubes, Appl. Phys. Lett. 81, 4835 (2002).

    Article  ADS  Google Scholar 

  29. S.-H. Jhi, S. G. Louie, M. L. Cohen: Electronic Properties of Oxidized Carbon Nanotubes, Phys. Rev. Lett. 85, 1710 (2000).

    Article  ADS  Google Scholar 

  30. P. G. Collins, K. Bradley, M. Ishigami, A. Zettl: Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science 287, 1801 (2000).

    Article  ADS  Google Scholar 

  31. X. Cui, M. Freitag, R. Martel, L. Brus, Ph. Avouris: Controlling Energy-Level Alignments at Carbon Nanotube/Au Contacts, Nano Lett. 3, 783 (2003).

    Article  ADS  Google Scholar 

  32. S. Sze: Physics of Semiconductor Devices, Wiley, New York 1981.

    Google Scholar 

  33. S. Datta: Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge 1995.

    Google Scholar 

  34. J. Guo, S. Datta, M. Lundstrom: Numerical Study of Scaling Issues for Schottky Barrier Carbon Nanotube Transistors, IEEE Trans. Electron Devices 51, 172 (2004).

    Article  ADS  Google Scholar 

  35. The dielectric properties of the NT are neglected here for simplicity. Within the approximation of neglecting charge on the NT we can take them into the account by appropriate boundary conditions for the electrostatic potential at the NT-oxide interface [14].

    Google Scholar 

  36. P. M. Morse and H. Feshbach: Methods of Theoretical Physics, McGraw-Hill, New York 1953.

    MATH  Google Scholar 

  37. J. Appenzeller, M. Radosavljeviø, J. Knoch, Ph. Avouris: Tunneling Versus Thermionic Emission in One-Dimensional Semiconductors, Phys. Rev. Lett. 92, 048301 (2004).

    Article  ADS  Google Scholar 

  38. M. Radosavljeviø, S. Heinze, J. Tersoff, Ph. Avouris: Drain voltage scaling in carbon nanotube transistors, Appl. Phys. Lett. 83, 2435 (2003).

    Article  ADS  Google Scholar 

  39. S. Heinze, J. Tersoff, Ph. Avouris: Electrostatic engineering of nanotube transistors for improved performance, Appl. Phys. Lett. 83, 5038 (2003).

    Article  ADS  Google Scholar 

  40. Y.-M. Lin, J. Appenzeller, Ph. Avouris: Ambipolar-to-Unipolar Conversion of Carbon Nanotube Transistors by Gate Structure Engineering, Nano Lett. 4, 947 (2004).

    Article  ADS  Google Scholar 

  41. M. Freitag, J. Chen, J. Tersoff, J. C. Tsang, Q. Fu, J. Liu, Ph. Avouris: Mobile Ambipolar Domain in Carbon-Nanotube Infrared Emitters, Phys. Rev. Lett. 93, 076803 (2004).

    Article  ADS  Google Scholar 

  42. M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, Ph. Avouris: Hot Carrier Electroluminescence from a Single Carbon Nanotube, Nano Lett. 4, 1063 (2004).

    Article  ADS  Google Scholar 

  43. V. Perebeinos, J. Tersoff, Ph. Avouris: Scaling of Excitons in Carbon Nanotubes, Phys. Rev. Lett. 92, 257402–1 (2004).

    Article  ADS  Google Scholar 

  44. E. Chang, G. Bussi, A. Ruini, E. Molinari: Excitons in Carbon Nanotubes: An Ab Initio Symmetry-Based Approach, Phys. Rev. Lett. 92, 196401 (2004).

    Article  ADS  Google Scholar 

  45. C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, S. G. Louie: Excitonic Effects and Optical Spectra of Single-Wall Carbon Nanotubes, Phys. Rev. Lett. 92, 077402 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Heinze, S., Tersoff, J., Avouris, P. (2006). Carbon Nanotube Electronics and Optoelectronics. In: Cuniberti, G., Richter, K., Fagas, G. (eds) Introducing Molecular Electronics. Lecture Notes in Physics, vol 680. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31514-4_15

Download citation

Publish with us

Policies and ethics