Quantum Transport in Carbon Nanotubes

  • Elsa Thune
  • Christoph Strunk
Part of the Lecture Notes in Physics book series (LNP, volume 680)


We present a tutorial introduction into the structure and electronic properties of carbon nanotubes which may serve as an entry point into the literature on the field. Some of the original experiments in the field are selected to illustrate the richness of quantum transport in single-and multi-wall carbon nanotubes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley: C60: Buckminsterfullerene, Nature 318, 162 (1985).CrossRefADSGoogle Scholar
  2. 2.
    D. Ugarte: Curling and closure of graphitic networks under electron-beam irradiation, Nature 359, 707 (1992).CrossRefADSGoogle Scholar
  3. 3.
    S. Iijima: Helical microtubules of graphitic carbon, Nature 354, 56 (1991).CrossRefADSGoogle Scholar
  4. 4.
    H. Terrones, M. Terrones: Beyond C60: Graphite structures for the future, Chem. Soc. Rev. 24, 341 (1995).CrossRefGoogle Scholar
  5. 5.
    M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris: Carbon nanotubes: Synthesis, Structure Properties and Applications (Springer-Verlag, Berlin, 2001).CrossRefGoogle Scholar
  6. 6.
    J.-P. Salvetat, G. A. D. Briggs, J.-M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stöckli, N. A. Burnham, and L. Forró: Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes, Phys. Rev. Lett. 82, 944 (1999).CrossRefADSGoogle Scholar
  7. 7.
    Ph. Avouris: Carbon nanotube electronics, Chem. Phys. 281, 429 (2002).CrossRefADSGoogle Scholar
  8. 8.
    R. Saito, G. Dresselhaus, and M. S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).CrossRefGoogle Scholar
  9. 9.
    R. H. Baughman, A. A. Zakhidov, and W. A. de Heer: Carbon Nanotubes-the Route Toward Applications, Science 297, 787 (2002).CrossRefADSGoogle Scholar
  10. 10.
    J. W. Mintmire and C. T. White: Electronic and structural properties of carbon nanotubes, Carbon 33, 893 (1995).CrossRefGoogle Scholar
  11. 11.
    A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M. S. Dresselhaus: Structural ( n, m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering, Phys. Rev. Lett. 86, 1118 (2001).CrossRefADSGoogle Scholar
  12. 12.
    Image gallery of R. E. Smalley: http://smalley.rice.edu/.Google Scholar
  13. 13.
    S. Iijima and T. Ichihashi: Single-shell carbon nanotubes of 1-nm diameter, Nature 363, 603 (1993).CrossRefADSGoogle Scholar
  14. 14.
    L.-C. Qin, S. Iijima, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba: Helicity and packing of single-walled carbon nanotubes studied by electron nanodiffraction, Chem. Phys. Lett. 268, 101 (1997).CrossRefADSGoogle Scholar
  15. 15.
    J. M. Cowley, P. Nikolaev, A. Thess, and R. E. Smalley: Electron nanodiffraction study of carbon single-walled nanotube ropes, Chem. Phys. Lett. 265, 379 (1997).CrossRefADSGoogle Scholar
  16. 16.
    M. Kociak, K. Suenaga, K. Hirahara, Y. Saito, T. Nakahira, and S. Iijima: Linking Chiral Indices and Transport Properties of Double-Walled Carbon Nanotubes, Phys. Rev. Lett. 89, 155501 (2002).CrossRefADSGoogle Scholar
  17. 17.
    J.-F. Colomer, L. Henrard, Ph. Lambin, and G. Van Tendeloo: Electron diffraction study of small bundles of single-wall carbon nanotubes with unique helicity, Phys. Rev. B 64, 125425 (2001).CrossRefADSGoogle Scholar
  18. 18.
    S. Amelinckx, A. Lucas, and Ph. Lambin: Electron diffraction and microscopy of nanotubes, Rep. Prog. Phys. 62, 1471 (1999).CrossRefADSGoogle Scholar
  19. 19.
    T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber: Atomic structure and electronic properties of single-walled carbon nanotubes, Nature 391, 62 (1998).CrossRefADSGoogle Scholar
  20. 20.
    J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker: Electronic structure of atomically resolved carbon nanotubes, Nature 391, 59 (1998).CrossRefADSGoogle Scholar
  21. 21.
    Ch. Kramberger, R. Pfeiffer, H. Kuzmany, V. Zolyomi, and J. Kurti: Assignment of chiral vectors in carbon nanotubes, Phys. Rev. B 68, 235404 (2003).CrossRefADSGoogle Scholar
  22. 22.
    S. B. Cronin, R. Bamett, M. Tinkham, S. G. Chou, O. Rabin, M. S. Dresselhaus, A. K. Swan, M. S. Ünlü, and B. B. Golberg: Electrochemical gating of individual single-wall carbon nanotubes observed by electron transport measurements and resonant Raman spectroscopy, Appl. Phys. Lett. 84, 2052 (2004).CrossRefADSGoogle Scholar
  23. 23.
    X. B. Zhang, X. F. Zhang, S. Amelinckx, G. Van Tendeloo, and J. Van Landuyt: The reciprocal space of carbon tubes: a detailed interpretation of the electron diffraction effects, Ultramicroscopy 54, 237 (1994).CrossRefGoogle Scholar
  24. 24.
    X. F. Zhang, X. B. Zhang, G. Van Tendeloo, S. Amelinckx, M. Op. de Beek, and J. Van Landuyt: Carbon nano-tubes; their formation process and observation by electron microscopy, J. Cryst. Growth 130, 368 (1993).CrossRefADSGoogle Scholar
  25. 25.
    X. B. Zhang and S. Amelinckx: On the measurements of the helix angles of carbon nanotubes, Carbon 32, 1537 (1994).CrossRefGoogle Scholar
  26. 26.
    M. Gao, M. Zuo, R. D. Twesten, I. Petrov, L. A. Nagahara, and R. Zhang: Structure determination of individual single-wall carbon nanotubes by nanoarea electron diffraction, App. Phys. Lett. 82, 2703 (2003).CrossRefADSGoogle Scholar
  27. 27.
    Ph. Lambin, A. Loiseau, C. Culot, and L. P. Biro: Structure of carbon nanotubes probed by local and global probes, Carbon 40, 1635 (2002).CrossRefGoogle Scholar
  28. 28.
    C. T. White, D. H. Robertson, and J. W. Mintmire: Helical and rotational symmetries of nanoscale graphitic tubules, Phys. Rev. B 47, 5485 (1993).CrossRefADSGoogle Scholar
  29. 29.
    T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber: Structure and Electronic Properties of Carbon Nanotubes, J. Phys. Chem. B 104, 2794 (2000).CrossRefGoogle Scholar
  30. 30.
    R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus: Electronic structure of graphene tubules based on C60, Phys. Rev. B 46, 1804 (1992).CrossRefADSGoogle Scholar
  31. 31.
    Ch. Zhou, J. Kong, and H. Dai: Intrinsic Electrical Properties of Individual Single-Walled Carbon Nanotubes with Small Band Gaps, Phys. Rev. Lett. 84, 5604 (2000).CrossRefADSGoogle Scholar
  32. 32.
    M. Ouyang, J.-L. Huang, C. L. Cheung, and C. M. Lieber: Energy Gaps in “Metallic” Single-Walled Carbon Nanotubes, Science 292, 702 (2001).CrossRefADSGoogle Scholar
  33. 33.
    A. Bachtold, M. S. Fuhrer, S. Plyasunov, M. Forero, E. H. Anderson, A. Zettl, and P. L. McEuen: Scanned Probe Microscopy of Electronic Transport in Carbon Nanotubes, Phys. Rev. Lett. 84, 6082 (2000).CrossRefADSGoogle Scholar
  34. 34.
    P. J. de Pablo, C. Gómez-Navarro, J. Colchero, P. A. Serena, J. G4oAmez-Herrero, and A. M. Baró: Nonlinear Resistance versus Length in Single-Walled Carbon Nanotubes, Phys. Rev. Lett. 88, 036804 (2002).CrossRefADSGoogle Scholar
  35. 35.
    P. Kim, T. W. Odom, J.-L. Huang, and C. M. Lieber: Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States, Phys. Rev. Lett. 82, 1225 (1999).CrossRefADSGoogle Scholar
  36. 36.
    L. C. Venema, J. W. G. Wildöer, J. W. Janssen, S. J. Tans, H. L. J. Temminck Tuinstra, L. P. Kouwenhoven, and C. Dekker: Imaging Electron Wave Functions of Quantized Energy Levels in Carbon Nanotubes, Science 283, 52 (1999).CrossRefADSGoogle Scholar
  37. 37.
    S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge 1995).Google Scholar
  38. 38.
    W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, and H. Park: Fabry - Perot interference in a nanotube electron waveguide, Nature 411, 665 (2001).CrossRefADSGoogle Scholar
  39. 39.
    S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer: Carbon Nanotube Quantum Resistors, Science 280, 1744 (1998).CrossRefADSGoogle Scholar
  40. 40.
    A. Urbina, I. Echeverria, A. Perez-Garrido, A. Dias-Sanchez, and J. Abellan: Quantum Conductance Steps in Solutions of Multiwalled Carbon Nanotubes, Phys. Rev. Lett. 90, 106603 (2003).CrossRefADSGoogle Scholar
  41. 41.
    B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon: Quantized conductance of point contacts in a two-dimensional electron gas, Phys. Rev. Lett. 60, 848 (1988).CrossRefADSGoogle Scholar
  42. 42.
    A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones: Onedimensional transport and the quantisation of the ballistic resistance, J. Phys. C 21, L 209 (1988).ADSGoogle Scholar
  43. 43.
    For a review, see e.g.: S. Washburn and R. Webb: Quantum transport in small disordered samples from the diffusive to the ballistic regime, Rep. Prog. Phys. 55, 1311 (1992).CrossRefADSGoogle Scholar
  44. 44.
    H. Ajiki and T. Ando: Electronic States of Carbon Nanotubes, Phys. Soc. of Jpn 62, 1255 (1993).CrossRefADSGoogle Scholar
  45. 45.
    S. Roche and R. Saito: Magnetoresistance of Carbon Nanotubes: From Molecular to Mesoscopic Fingerprints, Phys. Rev. Lett. 87, 246803 (2001).CrossRefADSGoogle Scholar
  46. 46.
    C. Schönenberger, A. Bachtold, C. Strunk, J. P. Salvetat, L. Forró: Interference and Interaction in multi-wall carbon nanotubes, App. Phys. A 69, 283 (1999).CrossRefADSGoogle Scholar
  47. 47.
    L. Langer, V. Bayot, E. Grivei, J. P. Issi, J. P. Heremans, C. H. Olk, L. Stockman, C. Van Haesendonck, and Y. Bruynseraede: Quantum Transport in a Multiwalled Carbon Nanotube, Phys. Rev. Lett. 76, 479 (1996).CrossRefADSGoogle Scholar
  48. 48.
    K. Liu, S. Roth, G. S. Düsberg, G. T. Kim, D. Popa, K. Mkhopadhyay, R. Doome, and J. B. Nagy: Antilocalization in multiwalled carbon nanotubes, Phys. Rev. B 61 2375 (2000).CrossRefADSGoogle Scholar
  49. 49.
    K. Liu, Ph. Avouris, R. Martel, and W. K. Hsu: Electrical transport in doped multiwalled carbon nanotubes, Phys. Rev. B 63, 161404 (2001).CrossRefADSGoogle Scholar
  50. 50.
    R. Tarkiainen, M. Ahlskog, J. Penttilä, L. Roschier, P. Hakonen, M. Paalanen, and E. Sonin: Multiwalled carbon nanotube: Luttinger versus Fermi liquid, Phys. Rev. B 64, 195412 (2001).CrossRefADSGoogle Scholar
  51. 51.
    P. A. Lee, T. V. Ramakrishnan: Disordered electronic systems, Rev. Mod. Phys 57, 287 (1985).CrossRefADSGoogle Scholar
  52. 52.
    B. L. Altshuler and A. G. Aronov: Magnetoresistance of thin films and of wires in a longitudinal magnetic field, JETP Lett. 33 499 (1981).ADSGoogle Scholar
  53. 53.
    M. Buitelaar: Electron Transport in Multiwall Carbon Nanotubes, Dissertation, University of Basel (2002).Google Scholar
  54. 54.
    J.-Y Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Üstünel, S. Braig, T. A. Arias, P. W. Brouwer, and P. L. McEuen: Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes, Nano Lett. 4, 517 (2004).CrossRefADSGoogle Scholar
  55. 55.
    B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitzkii: Suppression of localization effects by the high frequency field and the nyquist noise, Solid State Communications 39, 619 (1981).CrossRefADSGoogle Scholar
  56. 56.
    B. L. Altshuler, A. G. Aronov, and B. Z. Spivak: The Aaronov-Bohm effect in disordered conductors, Pis'ma Zh. Eksp. Teor. Fiz. 33, 101 (1981), [JETP Lett. 33, 94 (1981)].Google Scholar
  57. 57.
    Y. Sharvin and Y. V. Sharvin: Magnetic-flux quantization in a cylindrical film of a normal metal, Pis'ma Zh. Eksp. Teor. Fiz. 34, 285 (1981), [JETP Lett. 34, 272 (1981)].Google Scholar
  58. 58.
    A. Bachtold, C. Strunk, J. P. Salvetat, L. Forró, T. Nussbaumer, and C. Schönenberger: Aharonov-Bohm oscillations in carbon nanotubes, Nature 397, 673 (1999).CrossRefADSGoogle Scholar
  59. 59.
    B. Stojetz: Interplay of Bandstructure and Quantum Interference in Multi Wall Carbon Nanotubes, Dissertation, University of Regensburg (2004).Google Scholar
  60. 60.
    B. Stojetz, C. Miko, L. Forró, C. Strunk: Effect of Band Structure on Quantum Interference in Multiwall Carbon Nanotubes, to be published in Phys. Rev. Lett.Google Scholar
  61. 61.
    M. Thorwart, M. Grifoni, and R. Egger: Transport through intrinsic quantum dots in interacting carbon nanotubes, in this volume.Google Scholar
  62. 62.
    For a review see, e.g.: H. Grabert and M. H. Devoret (Edts.), Single Charge tunneling, NATO ASI Series B: 294 (Plenum Press, New York 1992).Google Scholar
  63. 63.
    S. J. Tans, A. R. M. Verschueren, and C. Dekker: Room-temperature transistor based on a single carbon nanotube, Nature 393, 49 (1998).CrossRefADSGoogle Scholar
  64. 64.
    S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerlings, and C. Dekker: Individual single-wall carbon nanotubes as quantum wires, Nature 386, 474 (1997).CrossRefADSGoogle Scholar
  65. 65.
    M. R. Buitelaar, A. Bachtold, T. Nussbaumer, M. Iqbal, and C. Schönenberger: Multiwall Carbon Nanotubes as Quantum Dots, Phys. Rev. Lett. 88, 156801 (2002).CrossRefADSGoogle Scholar
  66. 66.
    P. Jarillo-Herrero, S. Sapmaz, C. Dekker, L. P. Kouwenhoven, and H. S. J. van der Zant: Electron-hole symmetry in a semiconducting carbon nanotube quantum dot, Nature 429, 389 (2004).CrossRefADSGoogle Scholar
  67. 67.
    S. Heinze, J. Tersoff, and Ph. Avouris: Carbon nanotube electronics and optoelectronics, in this volume.Google Scholar
  68. 68.
    A. Bezryadin, A. R. M. Verschueren, S. J. Tans, and C. Dekker: Multiprobe Transport Experiments on Individual Single-Wall Carbon Nanotubes, Phys. Rev. Lett. 80, 4036 (1998).CrossRefADSGoogle Scholar
  69. 69.
    J. Nygard, D. H. Cobden, and P. E. Lindelof: Kondo physics in carbon nanotubes, Nature 408, 342 (2000).CrossRefADSGoogle Scholar
  70. 70.
    G. Grüner and A. Zawadowski: Magnetic impurities in non-magnetic metals, Rep. Prog. Phys. 37, 1497 (1974).CrossRefADSGoogle Scholar
  71. 71.
    D. Goldhaber-Gordon, H. Shtriktman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M. A. Kastner: Kondo effect in a single-electron transistor, Nature 391, 156 (1998).CrossRefADSGoogle Scholar
  72. 72.
    S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven: A Tunable Kondo Effect in Quantum Dots, Science 281, 540 (1998).CrossRefADSGoogle Scholar
  73. 73.
    C. V. Haesendonck, J. Vranken, and Y. Bruynseraede: Resonant Kondo Scattering of Weakly Localized Electrons, Phys. Rev. Lett. 58, 1968 (1987).CrossRefADSGoogle Scholar
  74. 74.
    R. P. Peters, G. Bergmann, and R. M. Mueller: Kondo Maximum of Magnetic Scattering, Phys. Rev. Lett. 58, 1964 (1987).CrossRefADSGoogle Scholar
  75. 75.
    W. G. van der Wiel, S. de Franceschi, T. Fujisawa, J. M. Elzerman, S. Tarucha, and L. P. Kouwenhoven: The Kondo Effect in the Unitary Limit, Science 289, 2105 (2000).CrossRefADSGoogle Scholar
  76. 76.
    M. R. Buitelaar, T. Nussbaumer, and C. Schönenberger: Quantum Dot in the Kondo Regime Coupled to Superconductors, Phys. Rev. Lett. 89, 256801 (2002).CrossRefADSGoogle Scholar
  77. 77.
    M. R. Buitelaar, W. Belzig, T. Nussbaumer, B. Babic, C. Bruder, and C. Schönenberger: Multiple Andreev Reflections in a Carbon Nanotube Quantum Dot, Phys. Rev. Lett. 91, 057005 (2003).CrossRefADSGoogle Scholar
  78. 78.
    A. N. Pasupathy, R. C. Bialczak, J. Martinek, J. E. Grose, L. A. K. Donev, P. L. McEuen, and D. C. Ralph: The Kondo Effect in the Presence of Ferromagnetism, Science 306, 86 (2004).CrossRefADSGoogle Scholar
  79. 79.
    R. Egger and A. O. Gogolin: Effective Low-Energy Theory for Correlated Carbon Nanotubes, Phys. Rev. Lett. 79, 5082 (1997).CrossRefADSGoogle Scholar
  80. 80.
    C. Kane, L. Balents, and M. A. Fisher: Coulomb Interactions and Mesoscopic Effects in Carbon Nanotubes, Phys. Rev. Lett. 79, 5086 (1997).CrossRefADSGoogle Scholar
  81. 81.
    M. Bockrath, D. H. Cobden, A. G. Rinzler, R. E. Smalley, L. Balents, and Paul L. McEuen: Luttinger-liquid behaviour in carbon nanotubes, Nature 397, 598 (1999).CrossRefADSGoogle Scholar
  82. 82.
    Z. Yao, H.W.Ch. Postma, L. Balents, and C. Dekker: Carbon nanotube intramolecular junctions, Nature 402, 273 (1999).CrossRefADSGoogle Scholar
  83. 83.
    M. P. A. Fisher and A. Dorsey: Dissipative Quantum Tunneling in a Biased Double-Well System at Finite Temperatures, Phys. Rev. Lett. 54, 1609 (1985).CrossRefADSGoogle Scholar
  84. 84.
    H. Grabert and U. Weiss: Quantum Tunneling Rates for Asymmetric Double-Well Systems with Ohmic Dissipation, Phys. Rev. Lett. 54, 1605 (1985).CrossRefADSGoogle Scholar
  85. 85.
    A. Bachtold, M. de Jonge, K. Grove-Rasmussen, P. L. McEuen, M. Buitelaar, and C. Schönenberger: Suppression of Tunneling into Multiwall Carbon Nanotubes, Phys. Rev. Lett. 87, 166801 (2001).CrossRefADSGoogle Scholar
  86. 86.
    W. Yi, L. Lu, H. Hu, Z. W. Pan, and S. S. Xie: Tunneling into Multiwalled Carbon Nanotubes: Coulomb Blockade and the Fano Resonance, Phys. Rev. Lett. 91, 076801 (2003).CrossRefADSGoogle Scholar
  87. 87.
    A. Kanda, K. Tsukagoshi, Y. Aoyagi, and Y. Ootuka: Gate-Voltage Dependence of Zero-Bias Anomalies in Multiwall Carbon Nanotubes, Phys. Rev. Lett. 92, 036801 (2004).CrossRefADSGoogle Scholar
  88. 88.
    R. Egger: Luttinger Liquid Behavior in Multiwall Carbon Nanotubes, Phys. Rev. Lett. 83, 5547 (1999).CrossRefADSGoogle Scholar
  89. 89.
    B. L. Altshuler and A. G. Aronov, Electron-electron Interactions in Disordered Systems, edited by A. L. Efros and M. Pollak (Elsevier, Amsterdam, 1985).Google Scholar
  90. 90.
    R. Egger and A. O. Gogolin: Bulk and Boundary Zero-Bias Anomaly in Multiwall Carbon Nanotubes, Phys. Rev. Lett. 87, 066401 (2001).CrossRefADSGoogle Scholar
  91. 91.
    E. G. Mishchenko, A. V. Andreev, and L. I. Glazman: Zero-Bias Anomaly in Disordered Wires, Phys. Rev. Lett. 87, 246801 (2001).CrossRefADSGoogle Scholar
  92. 92.
    J. Rollbühler and H. Grabert: Coulomb Blockade of Tunneling between Disordered Conductors, Phys. Rev. Lett. 87, 126804 (2001).CrossRefADSGoogle Scholar
  93. 93.
    B. Gao, A. Komnik, R. Egger, D. C. Glattli, and A. Bachtold: Evidence for Luttinger-Liquid Behavior in Crossed Metallic Single-Wall Nanotubes, Phys. Rev. Lett. 92, 216804 (2004).CrossRefADSGoogle Scholar
  94. 94.
    B. Reulet, A. Yu. Kasumov, M. Kociak, R. Deblock, I. I. Khodos, Yu. B. Gorbatov, V. T. Volkov, C. Journet, and H. Bouchiat: Acoustoelectric Effects in Carbon Nanotubes, Phys. Rev. Lett. 85, 2829 (2000).CrossRefADSGoogle Scholar
  95. 95.
    V. Sazonova, Y. Yaish, H. Ustünel, D. Roundy, T. A. Arias, and P. L. McEuen: A tunable carbon nanotube electromechanical oscillator, Nature 431, 284 (2004).CrossRefADSGoogle Scholar
  96. 96.
    K. Tsukagoshi, B. W. Alphenaar, and H. Ago: Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube, Nature 401, 572 (1999).CrossRefADSGoogle Scholar
  97. 97.
    B. Zhao, I.Mönch, H. Vinzelberg, T. Mühl, and C. M. Schneider: Spin-coherent transport in ferromagnetically contacted carbon nanotubes, Appl. Phys. Lett. 80, 3144 (2002).CrossRefADSGoogle Scholar
  98. 98.
    K. Keren, R. S. Berman, E. Buchstab, U. Sivan, and E. Braun: DNA-Templated Carbon Nanotube Field-Effect Transistor, Science 302, 1380 (2003).CrossRefADSGoogle Scholar
  99. 99.
    J. A. Misewich, R. Martel, Ph. Avouris, J. C. Tsang, S. Heinze, and J. Tersoff: Electrically Induced Optical Emission from a Carbon Nanotube FET, Science 300, 783 (2003).CrossRefADSGoogle Scholar
  100. 100.
    S. Li, Z. Yu, S.-F. Yen, W. C. Tang, P. J. Burke: Carbon Nanotube Transistor Operation at 2.6 GHz, Nano Lett. 4, 753 (2004).MATHCrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Elsa Thune
    • 1
  • Christoph Strunk
    • 1
  1. 1.Institute of Experimental and Applied PhysicsUniversity of RegensburgRegensburgGermany

Personalised recommendations