Skip to main content

Germline Recruitment in Mice: A Genetic Program for Epigenetic Reprogramming

  • Conference paper

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 60))

Abstract

Germ cells provide an enduring link between generations and therefore must possess the fundamental ability of reprogramming their genome to generate a totipotent state. We wish to understand the molecular basis of the unique properties of the mammalian germ line. Recently we identified Blimp1, a potent transcriptional repressor of a histone methyltransferase subfamily, as a critical determinant of the germ cell lineage in mice. Surprisingly, Blimp1 expression marks the origin of the germ line in proximal epiblast cells in pregastrulation embryos, substantially earlier than previously thought. Furthermore, we showed that established primordial germ cells undergo extensive erasure of genome-wide histone H3 lysine 9 dimethylation (H3K9me2) and DNA methylation, two major repressive epigenetic modifications, and instead acquire high levels of H3-K27 trimethylation (H3K27me3) in their migration period. We suggest that germline specification is a genetic system for the orderly reprogramming of the cells’ epigenome toward a totipotent state, with reacquisition of totipotency-associated transcription factors and continued Blimp1 expression preventing their reversion to an explicit pluripotent state or somatic differentiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arney KL, Bao S, Bannister AJ, Kouzarides T, Surani MA (2002) Histone methylation defines epigenetic asymmetry in the mouse zygote. Int JDev Biol 46:317–320

    CAS  Google Scholar 

  • Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17:126–140

    Article  PubMed  CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124

    Article  PubMed  CAS  Google Scholar 

  • Baxendale S, Davison C, Muxworthy C, Wolff C, Ingham PW, Roy S (2004) The B-cell maturation factor Blimp-1 specifies vertebrate slow-twitch muscle fiber identity in response to Hedgehog signaling. Nat Genet 36:88–93

    Article  PubMed  CAS  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  PubMed  CAS  Google Scholar 

  • Blackwell TK (2004) Germ cells: finding programs of mass repression. Curr Biol 14, R229–R230

    Article  PubMed  CAS  Google Scholar 

  • Brinster RL (2002) Germline stem cell transplantation and transgenesis. Science 296 2174–2176

    Article  PubMed  CAS  Google Scholar 

  • Cao R, Zhang Y(2004) SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 15:57–67

    Article  PubMed  CAS  Google Scholar 

  • Chang DH, Cattoretti G, Calame KL (2002) The dynamic expression pattern of B lymphocyte induced maturation protein-1 (Blimp-1) during mouse embryonic development. Mech Dev 117:305–309

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Matzuk MM (2001) Smad5 is required for mouse primordial germ cell development. Mech Dev 104:61–67

    Article  PubMed  CAS  Google Scholar 

  • Chiquoine AD (1954) The identification, origin and migration of the primordial germ cells in the mouse embryo. Anat Rec 118:135–146

    Article  PubMed  CAS  Google Scholar 

  • Chu GC, Dunn NR, Anderson DC, Oxburgh L, Robertson EJ (2004) Differential requirements for Smad4 in TGFbeta-dependent patterning of the early mouse embryo. Development 131:3501–3512

    Article  PubMed  CAS  Google Scholar 

  • De Sousa Lopes SM, Roelen BA, Monteiro RM, Emmens R, Lin HY, Li E, Lawson KA, Mummery CL (2004) BMP signaling mediated by ALK2 in the visceral endoderm is necessary for the generation of primordial germ cells in the mouse embryo. Genes Dev 18:1838–1849

    Article  PubMed  Google Scholar 

  • De Souza FS, Gawantka V, Gomez AP, Delius H, Ang SL, Niehrs C (1999) The zinc finger gene Xblimp1 controls anterior endomesodermal cell fate in Spemann’s organizer. EMBO J 18 6062–6072

    Article  PubMed  Google Scholar 

  • Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W (2001) Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci U S A 98:13734–3738

    Article  PubMed  CAS  Google Scholar 

  • Deblandre GA, Marinx OP, Evans SS, Majjaj S, Leo O, Caput D, Huez GA, Wathelet MG (1995) Expression cloning of an interferon-inducible 17-kDa membrane protein implicated in the control of cell growth. J Biol Chem 270:23860–23866

    Article  PubMed  CAS  Google Scholar 

  • Deshpande G, Calhoun G, Schedl P (2004) Overlapping mechanisms function to establish transcriptional quiescence in the embryonic Drosophila germline. Development 131:1247–1257

    Article  PubMed  CAS  Google Scholar 

  • Dodge JE, Kang YK, Beppu H, Lei H, Li E (2004) Histone H3-K9 methyltransferase ESET is essential for early development. MolCell Biol 24:2478–2486

    CAS  Google Scholar 

  • Eddy EM (1975) Germ plasm and the differentiation of the germ cell line. Int Rev Cytol 43:229–280

    Article  PubMed  CAS  Google Scholar 

  • Erhardt S, Su IH, Schneider R, Barton S, Bannister AJ, Perez-Burgos L, Jenuwein T, Kouzarides T, Tarakhovsky A, Surani MA(2003) Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 130:4235–4248

    Article  PubMed  CAS  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  PubMed  CAS  Google Scholar 

  • Evans SS, Lee DB, Han T, Tomasi TB, Evans RL (1990) Monoclonal antibody to the interferon-inducible protein Leu-13 triggers aggregation and inhibits proliferation of leukemic B cells. Blood 76:2583–2593

    PubMed  CAS  Google Scholar 

  • Evans SS, Collea RP, Leasure JA, Lee DB (1993) IFN-alpha induces homotypic adhesion and Leu-13 expression in human B lymphoid cells. J Immunol 150:736–747

    PubMed  CAS  Google Scholar 

  • Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884

    Article  PubMed  CAS  Google Scholar 

  • Gardner RL, Rossant J (1979) Investigation of the fate of 4–5 day post-coitum mouse inner cell mass cells by blastocyst injection. J Embryol Exp Morphol 52:141–152

    PubMed  CAS  Google Scholar 

  • Gardner RL, Lyon MF, Evans EP, Burtenshaw MD (1985) Clonal analysis of X-chromosome inactivation and the origin of the germ line in the mouse embryo. J Embryol Exp Morphol 88:349–363

    PubMed  CAS  Google Scholar 

  • Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ (2004) Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427:148–154

    Article  PubMed  CAS  Google Scholar 

  • Ginsburg M, Snow MH, McLaren A (1990) Primordial germ cells in the mouse embryo during gastrulation. Development 110:521–528

    PubMed  CAS  Google Scholar 

  • Gyory I, Wu J, Fejer G, Seto E, Wright KL (2004) PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nat Immunol 5:299–308

    Article  PubMed  CAS  Google Scholar 

  • Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117:15–23

    Article  PubMed  CAS  Google Scholar 

  • Hamatani T, Daikoku T, Wang H, Matsumoto H, Carter MG, Ko MS, Dey SK (2004) Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation. Proc Natl Acad Sci U S A 101:10326–10331

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Kobayashi T, Umino T, Goitsuka R, Matsui Y, Kitamura D (2002) SMAD1 signaling is critical for initial commitment of germ cell lineage from mouse epiblast. Mech Dev 118:99–109

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Lagunas L, Choi IF, Kaji T, Simpson P, Hershey C, Zhou Y, Zon L, Mercola M, Artinger KB (2005) Zebrafish narrowminded disrupts the transcription factor prdm1 and is required for neural crest and sensory neuron specification. Dev Biol 278:347–357

    Article  PubMed  CAS  Google Scholar 

  • Hubner K, Fuhrmann G, Christenson LK, Kehler J, Reinbold R, De La Fuente R, Wood J, Strauss JF 3rd, Boiani M, Scholer HR (2003) Derivation of oocytes from mouse embryonic stem cells. Science 300:1251–1256

    Article  PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Johnson AD, Crother B, White ME, Patient R, Bachvarova RF, Drum M, Masi T (2003) Regulative germ cell specification in axolotl embryos: a primitive trait conserved in the mammalian lineage. Philos Trans RSoc Lond B Biol Sci 358:1371–1379

    Article  CAS  Google Scholar 

  • Kafri T, Ariel M, Brandeis M, Shemer R, Urven L, McCarrey J, Cedar H, Razin A (1992) Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev 6:705–714

    PubMed  CAS  Google Scholar 

  • Lachner M, Jenuwein T (2002) The many faces of histone lysine methylation. Curr Opin Cell Biol 14:286–298

    Article  PubMed  CAS  Google Scholar 

  • Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120

    Article  PubMed  CAS  Google Scholar 

  • Lachner M, O’Sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116:2117–2124

    Article  PubMed  CAS  Google Scholar 

  • Lane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J, Reik W (2003) Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35:88–93

    Article  PubMed  CAS  Google Scholar 

  • Lawson KA, Hage WJ (1994) Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found Symp 182:68–84

    PubMed  CAS  Google Scholar 

  • Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, Korving JP, Hogan BL (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 13:424–436

    PubMed  CAS  Google Scholar 

  • Leatherman JL, Jongens TA (2003) Transcriptional silencing and translational control: key features of early germline development. Bioessays 25:326–335

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Inoue K, Ono R, Ogonuki N, Kohda T, Kaneko-Ishino T, Ogura A, Ishino F (2002) Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 129:1807–1817

    Article  PubMed  CAS  Google Scholar 

  • Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673

    Article  PubMed  CAS  Google Scholar 

  • Lin H (1997) The tao of stem cells in the germline. Annu Rev Genet 31:455–491

    Article  PubMed  CAS  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638

    Article  PubMed  CAS  Google Scholar 

  • Martinho RG, Kunwar PS, Casanova J, Lehmann R (2004) A noncoding RNA is required for the repression of RNApolII-dependent transcription in primordial germ cells. Curr Biol 14:159–165

    Article  PubMed  CAS  Google Scholar 

  • Matsui Y, Zsebo K, Hogan BL (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70:841–847

    Article  PubMed  CAS  Google Scholar 

  • McLaren A (1999) Signaling for germ cells. Genes Dev 13:373–376

    PubMed  CAS  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    Article  PubMed  CAS  Google Scholar 

  • Monk M, Boubelik M, Lehnert S (1987) Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99:371–382

    PubMed  CAS  Google Scholar 

  • Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14:R47–R58

    Article  PubMed  CAS  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–391

    Article  PubMed  CAS  Google Scholar 

  • O’Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T (2001) The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol 21:4330–4336

    Article  PubMed  CAS  Google Scholar 

  • Ohinata Y, Payer B, O’Carroll D, Ancelin K, Ono Y, Sano M, Barton SC, Obukhanych T, Nussenzweig M, Tarakhovsky A et al (2005) Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436:207–213

    Article  PubMed  CAS  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  PubMed  CAS  Google Scholar 

  • Olek A, Walter J (1997) The pre-implantation ontogeny of the H19 methylation imprint. Nat Genet 17:275–276

    Article  PubMed  CAS  Google Scholar 

  • Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K (2004) Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 23: 4061–4071

    Article  PubMed  CAS  Google Scholar 

  • Payer B, Saitou M, Barton SC, Thresher R, Dixon JP, Zahn D, Colledge WH, Carlton MB, Nakano T, Surani MA (2003) Stella is a maternal effect gene required for normal early development in mice. Curr Biol 13: 2110–2117

    Article  PubMed  CAS  Google Scholar 

  • Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A et al. (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337

    Article  PubMed  CAS  Google Scholar 

  • Peters AH, Kubicek S, Mechtler K, O’Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y et al (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12: 1577–1589

    Article  PubMed  CAS  Google Scholar 

  • Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131–135

    Article  PubMed  CAS  Google Scholar 

  • Ren B, Chee KJ, Kim TH, Maniatis T (1999) PRDI-BF1/Blimp-1 repression is mediated by corepressors of the Groucho family of proteins. Genes Dev 13:125–137

    PubMed  CAS  Google Scholar 

  • Rossant J, Tam PP (2004) Emerging asymmetry and embryonic patterning in early mouse development. Dev Cell 7:155–164

    Article  PubMed  CAS  Google Scholar 

  • Rougier N, Bourc’his D, Gomes DM, Niveleau A, Plachot M, Paldi A, Viegas-Pequignot E (1998) Chromosome methylation patterns during mammalian preimplantation development. Genes Dev 12:2108–2113

    PubMed  CAS  Google Scholar 

  • Roy S, Ng T (2004) Blimp-1 specifies neural crest and sensory neuron progenitors in the zebrafish embryo. Curr Biol 14:1772–1777

    Article  PubMed  CAS  Google Scholar 

  • Saitou M, Barton SC, Surani MA (2002) A molecular programme for the specification of germ cell fate in mice. Nature 418:293–300

    Article  PubMed  CAS  Google Scholar 

  • Saitou M, Payer B, Lange UC, Erhardt S, Barton SC, Surani MA (2003) Specification of germ cell fate in mice. Philos Trans RSoc Lond B Biol Sci 358:363–370

    Google Scholar 

  • Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241:172–182

    Article  PubMed  CAS  Google Scholar 

  • Santos F, Peters AH, Otte AP, Reik W, Dean W (2005) Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280:225–236

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Kimura T, Kurokawa K, Fujita Y, Abe K, Masuhara M, Yasunaga T, Ryo A, Yamamoto M, Nakano T (2002) Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells. Mech Dev 113:91–94

    Article  PubMed  CAS  Google Scholar 

  • Schaner CE, Deshpande G, Schedl PD, Kelly WG (2003) Aconserved chromatin architecture marks and maintains the restricted germ cell lineage in worms and flies. Dev Cell 5:747–757

    Article  PubMed  CAS  Google Scholar 

  • Sciammas R, Davis MM (2004) Modular nature of Blimp-1 in the regulation of gene expression during B cell maturation. J Immunol 172:5427–440

    PubMed  CAS  Google Scholar 

  • Seki Y, Hayashi K, Itoh K, Mizugaki M, Saitou M, Matsui Y (2005) Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev Biol 278:440–458

    Article  PubMed  CAS  Google Scholar 

  • Seydoux G, Dunn MA (1997) Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster. Development 124:191–201

    Google Scholar 

  • Seydoux G, Strome S (1999) Launching the germline in Caenorhabditis elegans: regulation of gene expression in early germ cells. Development 126:3275–3283

    PubMed  CAS  Google Scholar 

  • Seydoux G, Mello CC, Pettitt J, Wood WB, Priess JR, Fire A (1996) Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 382:713–716

    Article  PubMed  CAS  Google Scholar 

  • Shaffer AL, Lin KI, Kuo TC, Yu X, Hurt EM, Rosenwald A, Giltnane JM, Yang L, Zhao H, Calame K et al. (2002) Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17:51–62

    Article  PubMed  CAS  Google Scholar 

  • Shapiro-Shelef M, Lin KI, McHeyzer-Williams LJ, Liao J, McHeyzer-Williams MG, Calame K (2003) Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19:607–620

    Article  PubMed  CAS  Google Scholar 

  • Silva J, Mak W, Zvetkova I, Appanah R, Nesterova TB, Webster Z, Peters AH, Jenuwein T, Otte AP, Brockdorff N (2003) Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev Cell 4:481–495

    Article  PubMed  CAS  Google Scholar 

  • Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132:2093–2102

    Article  PubMed  CAS  Google Scholar 

  • Surani MA (2001) Reprogramming of genome function through epigenetic inheritance. Nature 414:122–128

    Article  PubMed  CAS  Google Scholar 

  • Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H et al. (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16:1779–1791

    Article  PubMed  CAS  Google Scholar 

  • Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T, Kodama T, Hamakubo T, Shinkai Y (2005) Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 19:815–826

    Article  PubMed  CAS  Google Scholar 

  • Tam PP, Zhou SX, Tan SS (1994) X-chromosome activity of the mouse primordial germ cells revealed by the expression of an X-linked lacZ transgene. Development 120:2925–2932

    PubMed  CAS  Google Scholar 

  • Toyooka Y, Tsunekawa N, Akasu R, Noce T (2003) Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA 100:11457–11462

    Article  PubMed  CAS  Google Scholar 

  • Tremblay KD, Dunn NR, Robertson EJ (2001) Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development 128:3609–3621

    PubMed  CAS  Google Scholar 

  • Turner CA Jr, Mack DH, Davis MM (1994) Blimp-1, a novel zinc fingercontaining protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77:297–306

    Article  PubMed  CAS  Google Scholar 

  • Van Doren M, Williamson AL, Lehmann R (1998) Regulation of zygotic gene expression in Drosophila primordial germ cells. Curr Biol 8:243–246

    Article  PubMed  Google Scholar 

  • Vincent SD, Dunn NR, Sciammas R, Shapiro-Shalef M, Davis MM, Calame K, Bikoff EK, Robertson EJ (2005) The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in themouse. Development 132:1315–1325

    Article  PubMed  CAS  Google Scholar 

  • Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Fullterm development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369–374

    Article  PubMed  CAS  Google Scholar 

  • Wakayama T, Shinkai Y, Tamashiro KL, Niida H, Blanchard DC, Blanchard RJ, Ogura A, Tanemura K, Tachibana M, Perry AC et al. (2000) Cloning of mice to six generations. Nature 407:318–319

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Cao R, Xia L, Erdjument-Bromage H, Borchers C, Tempst P, Zhang Y (2001) Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell 8:1207–1217

    Article  PubMed  CAS  Google Scholar 

  • Wilm TP, Solnica-Krezel L (2005) Essential roles of a zebrafish prdm1/blimp1 homolog in embryo patterning and organogenesis. Development 132:393–404

    Article  PubMed  CAS  Google Scholar 

  • Wylie C (1999) Germ cells. Cell 96:165–174

    Article  PubMed  CAS  Google Scholar 

  • Ying Y, Liu XM, Marble A, Lawson KA, Zhao GQ (2000) Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol 14:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Barboric M, Blackwell TK, Peterlin BM (2003) Amodel of repression: CTD analogs and PIE-1 inhibit transcriptional elongation by P-TEFb. Genes Dev 17:748–758

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohinata, Y., Seki, Y., Payer, B., O’Carroll, D., Surani, M.A., Saitou, M. (2006). Germline Recruitment in Mice: A Genetic Program for Epigenetic Reprogramming. In: Morser, J., Nishikawa, S.I., Schöler, H.R. (eds) Stem Cells in Reproduction and in the Brain. Ernst Schering Research Foundation Workshop, vol 60. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31437-7_11

Download citation

Publish with us

Policies and ethics