Skip to main content

Modeling Forest Regeneration

  • Chapter
Sustainable Forest Management

Abstract

The aim of this chapter is to review different approaches for simulating forest development in regeneration modeling. The features, shortcomings, further needs and trends of regeneration modeling are presented and discussed in the context of mechanistic, gap, statistical and nonparametric forest models. The data requirements are also described. Special emphasis is put on supplying information for modelers applying individual-tree models in uneven-aged stands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JA (1995) An introduction to neural networks. MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • Biber P, Herling H (2002) Modellierung der Verjünungsdynamik als Bestandteil von einzelbaumorientierten Waldwachstumssimulatoren. Sekton Ertragskunde DVFF, Schwarzenbach, pp 194–216

    Google Scholar 

  • Bolker B, Pacala SW (1997) Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor Popul Biol 52:179–197

    PubMed  Google Scholar 

  • Botkin DB (1993) Forest dynamics: an ecological model. Oxford University Press, Oxford

    Google Scholar 

  • Botkin DB, Janak JF, Wallis JR (1972) Some ecological consequences of a computer model of forest growth. J Ecol 60:849–872

    Google Scholar 

  • Buongiorno J, Peyron J-L, Houllier F, Bruciamacchie M (1995) Growth and management of mixed-species, uneven-aged forests in the French Jura: implications for economic returns and tree diversity. For Sci 41(3):397–429

    Google Scholar 

  • Canham CD, Platt WJ, Runkle JR, Spies TA, White PS (1990) Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can J For Res 20:620–631

    Google Scholar 

  • Chazdon RL (1988) Sunflecks and their importance to forest understory plants. In: Begon M, Fitter AH, Ford ED, Macfadyen A (eds) Advances in ecological research, vol 18. Academic Press, London, pp 2–63

    Google Scholar 

  • Ek AR (1974) Nonlinear models for stand table projection in northern hardwood stands. Can J For Res 4:23–27

    Google Scholar 

  • Ek AR, Robinson AP, Radtke PJ, Walters DK (1997) Development and testing of regeneration imputation models for forests in Minnesota. For Ecol Manage 94:129–140

    Article  Google Scholar 

  • FBVA (1994) Instruktionen für die Feldarbeit der Österreichischen Forstinventur. Forstliche Bundesversuchsanstalt, Wien

    Google Scholar 

  • Ferguson DE (1997) Regeneration models for FVS variants. In: Teck R, Moeur M, Adams J (eds) Proc Forest Vegetation Simulator Conf, Fort Collins, Colorado, 3–7 Feb. Gen Tech Rep INT-GTR-373. USDA Forest Service, Ogden, Utah, pp 43–49

    Google Scholar 

  • Ferguson DE, Carlson CE (1993) Predicting regeneration establishment with the Prognosis model. Res Pap INT-467. USDA Forest Service, Ogden, Utah

    Google Scholar 

  • Ferguson DE, Stage AR, Boyd RJ (1986) Predicting regeneration in the grand fir-cedar-hemlock ecosystem of the northern Rocky Mountains. For Sci Monogr 26:41

    Google Scholar 

  • Flemming G (1962) Strahlung und Wind an Bestandesrändern. Arch Forstwesen 11(6):647–656

    Google Scholar 

  • Froese K, LeMay V, Marshall PL, Zumrawi A-A (2002) Regeneration imputation models for PrognosisBC: IDFdm2 subzone variant, Invermere Forest District. Forest Research Management Department, University of British Columbia. http://www.forestry.ubc.ca/prognosis/documents/impute_invermere1.pdf (cited 26 Jan 2005)

    Google Scholar 

  • Goldstein H (1995) Multilevel statistical models, 2nd edn. Arnold, London

    Google Scholar 

  • Golser M, Hasenauer H (1997) Predicting juvenile tree height growth in uneven-aged mixed species stands in Austria. For Ecol Manage 97:133–146

    Article  Google Scholar 

  • Haara A, Maltamo M, Tokola T (1997) The k-nearest neighbour method for estimating basal-area diameter distribution. Scand J For Res 12:200–208

    Google Scholar 

  • Haight RG, Monserud RA (1990) Optimizing any-aged management of mixed-species stands. I. Performance of a coordinate-search process. Can J For Res 20:15–25

    Google Scholar 

  • Hasenauer H, Kindermann G (2002) Methods for assessing regeneration establishment and height growth in uneven-aged mixed species stands. Forestry 75:385–394

    Article  Google Scholar 

  • Hasenauer H, Merkl D (2001) Predicting regeneration establishment within mixed species stands using neural networks. In: Proc 21st IUFRO World Congr, 7–12 Aug 2000, Kuala Lumpur, Malaysia. Freib Forschungsber 37:145–154

    Google Scholar 

  • Hassani BT, LeMay V, Marshall PL, Zumrawi A-A (2002) Regeneration under partial cutting for PrognosisBC, MSdk, Cranbrook Forest District. Forest Research Management Department, University of British Columbia. http://www.forestry.ubc.ca/prognosis/documents/impute_cranbrook2.pdf (cited 26 Jan 2005)

    Google Scholar 

  • Hassani BT, LeMay V, Marshall PL, Temesgen H, Zumrawi A-A (2004) Regeneration imputation models for complex stands of southeastern British Columbia. For Chron 80:271–278

    Google Scholar 

  • Hynynen J, Ojansuu R, Hökkä H, Siipilehto J, Salminen H, Haapala P (2002) Models for predicting stand development in MELA system. Res Pap 835. Finnish Forestry Research Institute, Vantaa

    Google Scholar 

  • Hyppönen M (2002) Natural regeneration of Scots pine using the seed-tree method in Finnish Lapland (in Finnish with English summary). Res Pap 844. Dissertation. Finnish Forest Research Institute, Rovaniemi

    Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comp Graph Stat 5(3):299–314

    Google Scholar 

  • Kellomäki S, Hänninen H, Kolström T, Kotisaari H, Pukkala T (1987) A tentative model for describing the effects of some regenerative processes on the properties of natural seedling stands. Silva Fenn 21:1–10

    Google Scholar 

  • Kindermann G, Hasenauer H, Gasch J (2002) Ankommen und Wachstum von Naturverjüngung in Mischbeständen. Centralbl Ges Forstwesen 119:159–186

    Google Scholar 

  • Kinnunen K (1993) Direct sowing and natural regeneration of Scots pine in western Finland (in Finnish with English summary). Res Pap 447. Dissertation. Finnish Forest Research Institute, Parkano

    Google Scholar 

  • Kolström T (1993) Modelling the development of an uneven-aged stand of Picea abies. Scand J For Res 8:373–383

    Google Scholar 

  • Kozlowski TT (2002) Physiological ecology of natural regeneration of harvested and disturbed forest stands: implications for forest management. For Ecol Manage 158:195–221

    Article  Google Scholar 

  • Ledermann T (2002) Ein Einwuchsmodell aus den Daten der Österreichischen Waldinventur 1981–1996. Centralbl Ges Forstwesen 119:40–77

    Google Scholar 

  • Mäkelä A, Landsberg J, Ek AR, Burk TE, Ter-Mikaelian M, Ågren GI, Chadwick DO, Puttonen P (2000) Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol 20:289–298

    PubMed  Google Scholar 

  • Maltamo M, Kangas A (1998) Methods based on k-nearest neighbour regression in the prediction of basal area diameter distribution. Can J For Res 28:1107–1115

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, London, and University Press, Cambridge

    Google Scholar 

  • Meyer HA (1952) Structure, growth, and drain in balanced uneven-aged forests. J For 50(2):85–92

    Google Scholar 

  • Moeur M, Stage AR (1995) Most similar neighbour: an improved sampling inference procedure for natural resource planning. For Sci 41(2):337–359

    Google Scholar 

  • Monserud RA, Sterba H, Hasenauer H (1997) The single-tree stand growth simulator PROG-NAUS. In: Teck R, Moeur M, Adams J (eds) Proc Forest Vegetation Simulator Conf, Fort Collins, Colorado, 3–7 Feb. Gen Tech Rep INT-GTR-373. USDA Forest Service, Ogden, Utah, pp 50–56

    Google Scholar 

  • Munro DD (1974) Forest growth models — a prognosis. In: Fries J (ed) Growth models for tree and stand simulation. R Coll For Res Note 30:7–21

    Google Scholar 

  • Pacala SW, Canham CD, Saponara J, Silander Jr JA, Kobe RK, Ribbens E (1996) Forest models defined by field measurements: estimation, error analysis and dynamics. Ecol Monogr 66(1):1–43

    Google Scholar 

  • Peng C (2000) Growth and yield models for uneven-aged stands: past, present and future. For Ecol Manage 132:259–279

    Article  Google Scholar 

  • Pietsch SA, Hasenauer H (2002) Using mechanistic modelling within forest ecosystem restoration. For Ecol Manage 159:111–131

    Article  Google Scholar 

  • Posch B (2003) Jungwuchs und Schälmonitoring. Österr Forstzeitung 114:16–17

    Google Scholar 

  • Price DT, Zimmermann NE, van der Meer PJ, Lexer MJ, Leadley P, Jorritsma ITM, Schaber J, Clark DF, Lasch P, McNulty S, Wu J, Smith B (2001) Regeneration in gap models: priority issues for studying forest responses to climate change. Climate Change 51:475–508

    Article  Google Scholar 

  • Pukkala T (1987) Simulation model for natural regeneration of Pinus sylvestris, Picea abies, Betula pendula and Betula pubescens. Silva Fenn 21:37–53

    Google Scholar 

  • Pukkala T, Kolström T (1992) A stochastic spatial regeneration model for Pinus sylvestris. Scand J For Res 7:377–385

    Google Scholar 

  • Räsänen PK, Pohtila E, Laitinen E, Peltonen A, Rautiainen O (1985) Forest regeneration in the six southern most forestry board districts of Finland. Results from the inventories in 1978–1979 (in Finnish with English summary). Folia For 637:30

    Google Scholar 

  • Reimoser F, Gossow H (1996) Impact of ungulates on forest vegetation and its dependence on the silvicultural system. For Ecol Manage 88:107–119

    Article  Google Scholar 

  • Ribbens E, Silander JA Jr, Pacala SW (1994) Seedling recruitment in forests: calibrating models to predict patterns of tree seedling dispersion. Ecology 75:1794–1806

    Google Scholar 

  • Riedmiller M, Braun H (1993) A direct and adaptive method for faster backpropagation learning: the Rprop algorithm. In: Ruspini EH (ed) Proc IEEE Int Conf on Neural Networks, San Francisco, 28 March–1 April, vol 16, pp 586–591

    Google Scholar 

  • Ripley BD (1981) Spatial statistics. Wiley, New York

    Google Scholar 

  • Robinson DCE, Kurtz WA (1998) Analysis of the prognosis regeneration establishment model behaviour with BC regeneration data. ESSA Technologies, Vancouver. http://www.for.gov.bc.ca/hre/gymodels/progbc/Support/Regen.pdf (cited 26 Jan 2005)

    Google Scholar 

  • Rogers R, Johnson PS (1998) Approaches to modeling natural regeneration in oak-dominated forests. For Ecol Manage 106:45–54

    Article  Google Scholar 

  • Saarenmaa L (1990) Choice of reforestation method based on an expert system in Finnish Lapland (in Finnish with English summary). Folia For 762:49

    Google Scholar 

  • Saksa T (1992) Development of Scots pine plantations in prepared reforestation areas (in Finnish with English summary). Res Pap 418. Dissertation. Finnish Forest Research Instititute, Suonenjoki

    Google Scholar 

  • Saksa T, Särkkä-Pakkala K, Smolander H (2002) Työkalu metsänuudistamisen laatutyöhön (in Finnish). Metsätieteen Aikakauskirja 1:29–34

    Google Scholar 

  • Schweiger J, Sterba H (1997) A model describing natural regeneration recruitment of Norway spruce (Picea abies (L.) Karst.) in Austria. For Ecol Manage 97:107–118

    Article  Google Scholar 

  • Shugart HH (1984) A theory of forest dynamics: the ecological implications of forest succession models. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Sironen S, Kangas A, Maltamo M, Kangas J (2003) Estimating individual tree growth with nonparametric methods. Can J For Res 33:444–449

    Article  Google Scholar 

  • Snijders T, Bosker R (1999) Multilevel analysis. An introduction to basic and advanced multilevel modeling. Sage, London

    Google Scholar 

  • Solomon DS, Herman DA, Leak EB (1995) FIBER 3.0: an ecological growth model for northeastern forest types. Gen Tech Rep NE-204. USDA Forest Service, Newtown Square, Pennsylvania

    Google Scholar 

  • Thornton PE (1998) Description of a numerical simulation model for predicting the dynamics of energy, water, carbon and nitrogen in a terrestrial ecosystem. Dissertation. University of Montana, Missoula

    Google Scholar 

  • Trasobares A, Pukkala T, Miina J (2004) Growth and yield model for uneven-aged mixtures of Pinus sylvestris L. and Pinus nigra Arn. in Catalonia, north-east Spain. Ann For Sci 61:9–24

    Google Scholar 

  • Valkonen S (2000) Kuusen taimikon kasvattamisen vaihtoehdot Etelä-Suomen kivennäismailla: Puhdas kuusen viljelytaimikko, vapautettu alikasvos ja kuusi-koivusekataimikko (in Finnish). Dissertation. Res Pap 763. Finnish Forest Research Institute, Vantaa

    Google Scholar 

  • Vanclay JK (1994) Modelling forest growth and yield: applications to mixed tropical forests. CAB International, Wallingford

    Google Scholar 

  • Venables W, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wilson GF, Maguire DA (1996) Simulation of early regeneration processes in mixed-species forests of Maine, USA: germination, survival, and height growth. In: Skovsgaard JP, Johannsen VK (eds) Modelling regeneration success and early growth of forest stands. Proc IUFRO Conf, 10–13 June, Copenhagen. Danish Forest and Landscape Research Institute, Hørsholm, pp 530–539

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miina, J., Eerikäinen, K., Hasenauer, H. (2006). Modeling Forest Regeneration. In: Hasenauer, H. (eds) Sustainable Forest Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31304-4_9

Download citation

Publish with us

Policies and ethics