Skip to main content

Symmetric Positive-Definite Matrices: From Geometry to Applications and Visualization

  • Chapter
Visualization and Processing of Tensor Fields

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

In many engineering applications that use tensor analysis, such as tensor imaging, the underlying tensors have the characteristic of being positive definite. It might therefore be more appropriate to use techniques specially adapted to such tensors. We will describe the geometry and calculus on the Riemannian symmetric space of positive-definite tensors. First, we will explain why the geometry, constructed by Emile Cartan, is a natural geometry on that space. Then, we will use this framework to present formulas for means and interpolations specific to positive-definite tensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, S. (1985) Differential-Geometrical Methods in Statistics. Springer-Verlag, Berlin Heidelberg.

    MATH  Google Scholar 

  2. Basser, P. and Pierpaoli, C. (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI, J. Magn. Reson. B 111/3, pp. 209–219.

    Article  Google Scholar 

  3. Batchelor, P. G., Moakher, M., Atkinson, D., Calamante, F., Connelly, A. (2004) A rigorous framework for diffusion tensor analysis using Riemannian geometry. Magn. Reson. Med., in press.

    Google Scholar 

  4. Helgason, S. (1978) Differential Geometry, Lie Groups, and Symmetric spaces. Academic Press, New York.

    MATH  Google Scholar 

  5. Kullback, S. L. (1959) Information Theory and Statistics. Wiley, New York.

    MATH  Google Scholar 

  6. Lang, S. (1999) Fundamentals of Differential Geometry. Springer-Verlag, New York.

    MATH  Google Scholar 

  7. Lenglet, C., Rousson, M., Deriche, R. (2004) Segmentation of 3D Probability Density Fields by Surface Evolution: Application to Diffusion MRI, in: MICCAI 2004, Part I, C. Barillot, D. R. Haynor, P. Hellier, eds. Lecture Notes in Computer Science, Vol. 3216, Springer-Verlag, Berlin, pp. 18–25.

    Google Scholar 

  8. Moakher, M. (2003) A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl., in press.

    Google Scholar 

  9. Moakher, M. (2004) On the averaging of symmetric positive-definite tensors, submitted to: J. Elasticity.

    Google Scholar 

  10. Papadakis, N. G., Xing, D., Houston, G. C., Smith, J.M., Smith, M. I., James, M. F., Parsons, A. A., Huang, C. L.-H., Hall, L. D., Carpenter, T. A. (1999) A study of rotationally invariant and symmetric indices of diffusion anisotropy, Magn. Reson. Imag., 17/6, pp. 881–892.

    Article  Google Scholar 

  11. Pierpaoli, C. and Basser, P. J. (1996) Toward a quantitative assessment of diffusion anisotropy, Magn. Reson. Med., 36/6, pp. 893–906.

    Article  Google Scholar 

  12. Smith, S. T. (1993) Geometric optimization methods for adaptive filtering. Ph.D. thesis, Harvard University, Cambridge, Massachussetts.

    Google Scholar 

  13. Terras, A. (1988) Harmonic Analysis on Symmetric Spaces and Applications II. Springer-Verlag, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moakher, M., Batchelor, P.G. (2006). Symmetric Positive-Definite Matrices: From Geometry to Applications and Visualization. In: Weickert, J., Hagen, H. (eds) Visualization and Processing of Tensor Fields. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31272-2_17

Download citation

Publish with us

Policies and ethics