Advertisement

Short- and Long-Term Responses of Fertile Grassland to Elevated [CO2]

  • A. Lüscher
  • U. Aeschlimann
  • M. K. Schneider
  • H. Blum
Part of the Ecological Studies book series (ECOLSTUD, volume 187)

Keywords

Soil Organic Matter Specific Leaf Area Perennial Ryegrass Grassland Ecosystem Calcareous Grassland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aeschlimann U, Nösberger J, Edwards PJ, Schneider MK, Richter M, Blum H (2005) Responses of net ecosystem CO2 exchange in managed grassland to long-term CO2 enrichment, N fertilization and plant species. Plant Cell Environ 28:823–833CrossRefGoogle Scholar
  2. Ainsworth EA, Davey PA, Hymus GJ, Osborne CP, Rogers A, Blum H, Nösberger J, Long SP (2003a) Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for ten years at two nitrogen fertilization levels under free air CO2 enrichment (FACE). Plant Cell Environ 26:705–714CrossRefGoogle Scholar
  3. Ainsworth EA, Rogers A, Blum H, Nösberger J, Long SP (2003b) Variation in acclimation of photosynthesis in Trifolium repens after eight years of exposure to free air CO2 enrichment (FACE). J Exp Bot 54:2769–2774PubMedCrossRefGoogle Scholar
  4. Almeida JPF, Lüscher A, Frehner M, Oberson A, Nösberger J (1999) Partitioning of P and the activity of root acid phosphatase in white clover (Trifolium repens L.) are modified by increased atmospheric CO2 and P fertilization. Plant Soil 210:159–166CrossRefGoogle Scholar
  5. Almeida JPF, Hartwig UA, Frehner M, Nösberger J, Lüscher A (2000) Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). J Exp Bot 51:1289–1297PubMedCrossRefGoogle Scholar
  6. Campbell BD, Stafford Smith DM, Ash AJ, Fuhrer J, Gifford RM, Hiernaux P, Howden SM, Jones MB, Ludwig JA, Manderscheid R, Morgan JA, Newton PCD, Nösberger J, Owensby CE, Soussana JF, Tuba Z, ZuoZhong C (2000) A synthesis of recent global change research on pasture and rangeland production: reduced uncertainties and their management implications. Agric Ecosyst Environ 82:39–55CrossRefGoogle Scholar
  7. Daepp M, Suter D, Almeida JPF, Isopp H, Hartwig UA, Frehner M, Blum H, Nösberger J, Lüscher A (2000) Yield response of Lolium perenne swards to free air CO2 enrichment increased over six years in a high-N-input system on fertile soil. Global Change Biol 6:805–816CrossRefGoogle Scholar
  8. Daepp M, Nösberger J, Lüscher A (2001) Nitrogen fertilization and developmental stage alter the response of Lolium perenne to elevated CO2. New Phytol 150:347–358CrossRefGoogle Scholar
  9. De Graaff MA, Six J, Harris D, Blum H, van Kessel C (2004) Decomposition of soil and plant carbon from pasture systems after 9 years of exposure to elevated CO2: impact on C cycling and modeling. Global Change Biol 10:1922–1935CrossRefGoogle Scholar
  10. Drissner D, Blum H, Kandeler E (2006) Nine years of elevated CO2 shifts function and structural diversity of soil microorganisms in a grassland. Eur J Soil Sci (in press)Google Scholar
  11. Ebersberger D, Niklaus PA, Kandeler E (2003) Long term CO2 enrichment stimulates Nmineralisation and enzyme activities in calcareous grassland. Soil Biol Biochem 35:965–972CrossRefGoogle Scholar
  12. Fischer BU, Frehner M, Hebeisen T, Zanetti S, Stadelmann F, Lüscher A, Hartwig UA, Hendrey GR, Blum H, Nösberger J (1997) Source-sink relations in Lolium perenne L. as reflected by carbohydrate concentrations in leaves and pseudo-stems during regrowth in a free air carbon dioxide enrichment (FACE) experiment. Plant Cell Envir 20:945–952CrossRefGoogle Scholar
  13. Glaser B, Millar N, Blum H, Zech W (2006) Sequestration and turnover of microbialderived carbon into a temperate grassland soil under elevated atmospheric pCO2. Global Change Biol (submitted)Google Scholar
  14. Hebeisen T, Lüscher A, Zanetti S, Fischer BU, Hartwig UA, Frehner M, Hendrey GR, Blum H, Nösberger J (1997) Growth response of Trifolium repens L. and Lolium perenne L. as monocultures and bi-species mixture to free air CO2 enrichment and management. Global Change Biol 3:149–160CrossRefGoogle Scholar
  15. Isopp H, Frehner M, Almeida JPF, Blum H, Daepp M, Hartwig UA, Lüscher A, Suter D, Nösberger J (2000) Nitrogen plays a major role in leaves when source-sink relations change: C and N metabolism in Lolium perenne growing under free air CO2 enrichment. Aust J Plant Physiol 27:851–858Google Scholar
  16. Jongen M, Jones MB, Hebeisen T, Blum H, Hendrey G (1995) The effects of elevated CO2 concentrations on the root-growth of Lolium perenne and Trifolium repens grown in a FACE system. Global Change Biol 1:361–371CrossRefGoogle Scholar
  17. Lemaire G, Gastal F, Salette J (1989) Analysis of the effect of N nutrition on dry matter yield and optimum N content. Proc Int Grassland Congr 16:179–180Google Scholar
  18. Long SP, Ainsworth EA, Rogers A, Ort D (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628PubMedCrossRefGoogle Scholar
  19. Luo Y, Field CB, Mooney HA (1994) Predicting responses of photosynthesis and root fraction to elevated [CO2] (a) interactions among carbon, nitrogen, and growth. Plant Cell Environ 17:1195–1204CrossRefGoogle Scholar
  20. Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hunate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive N limitation of ecosystem responses to rising atmospheric carbon dioxide. Biosci 54: 731–739CrossRefGoogle Scholar
  21. Lüscher A, Hendrey GR, Nösberger J (1998) Long-term responsiveness to free air CO2 enrichment of functional types, species and genotypes of plants from fertile permanent grassland. Oecologia 113:37–45Google Scholar
  22. Lüscher A, Hartwig UA, Suter D, Nösberger J (2000) Direct evidence that symbiotic N2 fixation in fertile grassland is an important trait for a strong response of plants to elevated atmospheric CO2. Global Change Biol 6:655–662CrossRefGoogle Scholar
  23. Lüscher A, Daepp M, Blum H, Hartwig UA, Nösberger J (2004) Fertile temperate grassland under elevated atmospheric CO2-role of feed-back mechanisms and availability of growth resources. Eur J Agron 21:379–398CrossRefGoogle Scholar
  24. Lüscher A, Fuhrer J, Newton PCD (2005) Global atmospheric change and its effect on managed grassland systems. In: McGilloway DA (ed) Grassland: a global resource. Wageningen Academic, Wageningen, pp 251–264Google Scholar
  25. Navas ML, Garnier E, Austin MP, Gifford RM (1999) Effect of competition on the responses of grasses and legumes to elevated atmospheric CO2 along a nitrogen gradient: differences between isolated plants, monocultures and multi-species mixtures. New Phytol 143:323–331CrossRefGoogle Scholar
  26. Newton PCD (1991) Direct effects of increasing carbon dioxide on pasture plants and communities. NZ J Agric Res 34:1–24Google Scholar
  27. Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165CrossRefGoogle Scholar
  28. Řezácýová V, Blum H, Hršelová H, Gamper H, Gryndler M (2005) Saprobic microfungiunder Lolium perenne and Trifolium repens at different fertilization intensities and elevated atmospheric CO2 concentration. Global Change Biol 11:224–230CrossRefGoogle Scholar
  29. Rogers A, Fischer BU, Bryant J, Frehner M, Blum H, Raines CA, Long SP (1998) Acclimation of photosynthesis to elevated CO2 under low-nitrogen is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO2 enrichment. Plant Physiol 118:683–689PubMedCrossRefGoogle Scholar
  30. Sauerbeck DR (2001) CO2 emissions and C sequestration by agriculture — perspectives and limitations. Nutrient Cycling Agroecosyst 60:253–266CrossRefGoogle Scholar
  31. Schenk U, Manderscheid R, Hugen J, Weigel HJ (1995) Effects of CO2 enrichment and intraspecific competition on biomass partitioning, nitrogen-content and microbial biomass carbon in soil of perennial ryegrass and white clover. J Exp Bot 46:987–993Google Scholar
  32. Schimel D, Melillo J, Tian HQ, Mcguire AD, Kicklighter D, Kittel T, Rosenbloom N, Running S, Thornton P, Ojima D, Parton W, Kelly R, Sykes M, Neilson R, Rizzo B (2000) Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287:2004–2006PubMedCrossRefGoogle Scholar
  33. Schneider MK, Lüscher A, Richter M, Aeschlimann U, Hartwig UA, Blum H, Frossard E, Nösberger J (2004) Ten years of free-air CO2 enrichment altered the mobilization of N from soil in Lolium perenne L. swards. Global Change Biol 10:377–388CrossRefGoogle Scholar
  34. Schneider MK, Lüscher A, Frossard E, Nösberger J (2006) An overlooked carbon source to grasdsland soils: Loss of structural C from stubble in response to pCO2 and N supply. New Phytologist, in pressGoogle Scholar
  35. Soussana JF, Hartwig UA (1996) The effects of elevated CO2 on symbiotic N2 fixation: a link between the carbon and nitrogen cycles in grassland ecosystems. Plant Soil 187:321–332CrossRefGoogle Scholar
  36. Soussana JF, Casella E, Loiseau P (1996) Long-term effects of CO2 enrichment and temperature increase on a temperate grass sward. II. Plant nitrogen budgets and root fraction. Plant Soil 182:101–114CrossRefGoogle Scholar
  37. Sowerby A, Blum H, Gray TRG, Ball AS (2000) The decomposition of Lolium perenne in soils exposed to elevated CO2: comparisons of mass loss of litter with soil respiration and soil microbial biomass. Soil Biol Biochem 32:1359–1366CrossRefGoogle Scholar
  38. Sowerby A, Blum H, Ball AS (2005) Elevated atmospheric CO2 affects the turnover of nitrogen in a European grassland. Appl Soil Ecol 28:37–46CrossRefGoogle Scholar
  39. Stöcklin J, Schweizer K, Körner C (1998) Effects of elevated CO2 and phosphorus addition on productivity and community composition of intact monoliths from calcareous grassland. Oecologia 116:50–56CrossRefGoogle Scholar
  40. Stulen I, Den Hertog J (1993) Root growth and functioning under atmospheric CO2 enrichment. Vegetatio 104:99–111CrossRefGoogle Scholar
  41. Suter D, Nösberger J, Lüscher A (2001) Response of perennial ryegrass to free-air CO2 enrichment (FACE) is related to the dynamics of sward structure during regrowth. Crop Sci 41:810–817CrossRefGoogle Scholar
  42. Suter D, Frehner M, Fischer BU, Nösberger J, Lüscher A (2002) Elevated CO 2 increases carbon allocation to the roots of Lolium perenne under Free-Air CO2 Enrichment but not in a controlled environment. New Phytol 154:65–75CrossRefGoogle Scholar
  43. Van Groenigen KJ, Six J, Harris D, Blum H, Van Kessel C (2003) Soil 13C-15Ndynamics in an N2-fixing clover system under long-term exposure to elevated atmospheric CO2. Global Change Biol 9:1751–1762CrossRefGoogle Scholar
  44. Volk M, Niklaus PA (2002) Respiratory carbon loss of calcareous grasslands in winter shows no effects of 4 years CO2 enrichment. Funct Ecol 16:162–166CrossRefGoogle Scholar
  45. Xie Z, Cadisch G, Edwards G, Baggs EM, Blum H (2005) Carbon dynamics in a temperate grassland soil after 9 years exposure to elevated CO2 (Swiss FACE). Soil Biol Biochem 37:1387–1395CrossRefGoogle Scholar
  46. Zanetti S, Hartwig UA, Lüscher A, Hebeisen T, Frehner M, Fischer BU, Hendrey GR, Blum H, Nösberger J (1996) Stimulation of symbiotic N2 fixation in Trifolium repens L under elevated atmospheric pCO2 in a grassland ecosystem. Plant Physiol 112:575–583PubMedGoogle Scholar
  47. Zanetti S, Hartwig UA, Van Kessel C, Lüscher A, Hebeisen T, Frehner M, Fischer BU, Hendrey GR, Blum H, Nösberger J (1997) Does nitrogen nutrition restrict the CO2 response of fertile grassland lacking legumes? Oecologia 112:17–25CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. Lüscher
    • 1
  • U. Aeschlimann
    • 2
  • M. K. Schneider
    • 3
  • H. Blum
    • 2
  1. 1.Agroscope FAL ReckenholzZurichSwitzerland
  2. 2.Institute of Plant SciencesSwiss Federal Institute of Technology (ETH)ZürichSwitzerland
  3. 3.Swiss Federal Institute of Aquatic Science and Technology EawagDübendorfSwitzerland

Personalised recommendations