Advertisement

SoyFACE: the Effects and Interactions of Elevated [CO2] and [O3] on Soybean

  • D. R. Ort
  • E. A. Ainsworth
  • M. Aldea
  • D. J. Allen
  • C. J. Bernacchi
  • M. R. Berenbaum
  • G. A. Bollero
  • G. Cornic
  • P. A. Davey
  • O. Dermody
  • F. G. Dohleman
  • J. G. Hamilton
  • E. A. Heaton
  • A. D. B. Leakey
  • J. Mahoney
  • T. A. Mies
  • P. B. Morgan
  • R. L. Nelson
  • B. O’Neil
  • A. Rogers
  • A. R. Zangerl
  • X. -G. Zhu
  • E. H. DeLucia
  • S. P. Long
Part of the Ecological Studies book series (ECOLSTUD, volume 187)

4.7 Conclusions

The SoyFACE experiment is the first to focus on the affects of e[CO2] and e[O3] on a seed legume under fully open-air conditions. The experiment mimicked e[CO2] and e[O3] predicted for the middle of this century and was conducted in one of the world’s major production areas for corn and soybean under cultivation and management techniques standard for the industry in the United States corn-belt region.Growth of soybean at e[CO2] resulted in an approximately 25 % increase in the daily integral of net leaf CO2 uptake, a 20% increase in the rate of light saturated CO2 uptake, a 15 % increase in seed yield, a 15 % increase in above ground primary productivity, and a 20 % increase in node number. Growth of soybean at e[CO2] also resulted in approximately a 30 % decrease in mid-day stomatal conductance, a 10 % decrease in stomatal conductance averaged over the day, an 8% decrease in the limitation of photosynthesis by stomatal conductance, and a 2–3 % decrease in harvest index.

Growth of soybean at e[CO2] caused about a 5% decrease in the ratio of maximum carboxylation capacity compared to maximum electron transport capacity, indicative of acclimation to optimize photosynthetic performance to the higher [CO2] conditions.Growth of soybean at e[CO2] extended the growing season and resulted in increased herbivory by Japanese beetles.

Growth of soybean at e[O3] was largely deleterious to soybean although the effects developed slowly over the course of the growing season. e[O3] resulted in decreases in seed yield (15–25 %), above-ground primary productivity (11–23 %), and harvest index (2–3 %). Growth at e[O3] caused accelerated senescence of the crop.

Keywords

Stomatal Conductance Seed Yield Leaf Area Index Harvest Index Global Change Biol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth EA, Davey PA, Bernacchi CJ, Dermody OC, Heaton EA, Moore DJ, Morgan PB, Naidu SL, Ra HY, Zhu X, Curtis PS, Long SP (2002) A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Global Change Biol 8:1–15CrossRefGoogle Scholar
  2. Ainsworth EA, Rogers A, Nelson R, Long SP (2003) Testing the “source-sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agric For Meteorol 122:85–94CrossRefGoogle Scholar
  3. Ashmore MR (2002) Effects of oxidants at the whole plant and community level. In: Bell JNB, Treshow M (eds) Air pollution and plants. Wiley, LondonGoogle Scholar
  4. Bernacchi CJ, Morgan PB, Ort DR, Long SP (2005) The growth of soybean under free air [CO2] enrichment (FACE) stimulates photosynthesis while decreasing in vivo Rubisco activity. Planta 220:434–446PubMedCrossRefGoogle Scholar
  5. Bezemer TM, Jones TH (1998) Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82:212–222Google Scholar
  6. Cotrufo M, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biol 4:43–54CrossRefGoogle Scholar
  7. Dermody O, Long SP, DeLucia EH (2005) How does elevated CO2 or ozone affect the leafarea index of soybean when applied independently? New Phytol doi:10.1111/j.1469-8137.2005.01565.xGoogle Scholar
  8. Drake BG, Gonzalez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising CO2. Annu Rev Plant Physiol 48:609–639CrossRefGoogle Scholar
  9. FAO-UN (2002) FAO trade yearbook (vol 165). FAO, RomeGoogle Scholar
  10. Fowler D, Cape JN, Coyle M, Flechard C, Kuylenstierna J, Hicks K, Derwent D, Johnson C, Stevenson D (1999a) The global exposure of forests to air pollutants. Water Air Soil Pollut 116:5–32CrossRefGoogle Scholar
  11. Fowler D, Cape JN, Coyle M, Smith RI, Hjellbrekke AG, Simpson D, Derwent RG, Johnson CE (1999b) Modeling photochemical oxidant formation, transport, deposition and exposure of terrestrial ecosystems. Environ Pollut 100:43–55PubMedCrossRefGoogle Scholar
  12. Fuhrer J, Skarby L, Ashmore MR (1997) Critical levels for ozone effects on vegetation. Eur Environ Pollut 97:91–106CrossRefGoogle Scholar
  13. Hamilton JG, Dermody O, Aldea M, Zangerl AR, Rogers A, Berenbaum MR, DeLucia EH (2005) Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. Environ Entomol 34:479–485CrossRefGoogle Scholar
  14. Kim HY, Lieffering M, Kobayashi K, Okada M, Miura S (2003) Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply:A free air CO2 enrichment (FACE) experiment. Global Change Biol 9:826–837CrossRefGoogle Scholar
  15. Kimball BA, Pinter PJ, Garcia RL, Lamorte RL, Wall GW, Hunsaker DJ, Wechsung G, Wechsung F, Kartschall T (1995) Productivity and water use of wheat under free-air CO2 enrichment. Global Change Biol 1:429–442CrossRefGoogle Scholar
  16. Leakey ADB, Bernacchi CJ, Ort DR, Long SP (2004) Will photosynthesis of maize (Zea maize) in the US cornbelt increase in future [CO2] rich atmospheres? An analysis of diurnal courses of CO2 uptake under free-air enrichment. Global Change Biol 10:951–962CrossRefGoogle Scholar
  17. Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations of photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401PubMedCrossRefGoogle Scholar
  18. Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: Plants FACE the future. Annu Rev Plant Biol 55:591–628PubMedCrossRefGoogle Scholar
  19. McKee IF, Farage PK, Long SP (1995) The interactive effects of elevated CO2 and O3 concentration on photosynthesis in spring wheat. Photosynth Res 45:111–119CrossRefGoogle Scholar
  20. McKee IF, Mulholland BJ, Craigon J, Black CR, Long SP (2000) Elevated concentrations of atmospheric CO2 protect against and compensate for O3 damage to photosynthetic tissues of field-grown wheat. New Phytol 146:427–435CrossRefGoogle Scholar
  21. Miglietta F, Peressotti A, Vaccari FP, Zaldei A, deAngelis P, Scarascia-Mugnozza G (2001) Free-air CO2 enrichment (FACE) of a poplar plantation: the POPFACE fumigation system. New Phytol 150:465–476CrossRefGoogle Scholar
  22. Miller JE, Heagle AS, Pursley WA (1998) Influence of ozone stress on soybean response to carbon dioxide enrichment II. Biomass and development. Crop Sci 38:122–128CrossRefGoogle Scholar
  23. Mills G. Hayes F, Buse A, Reynolds B (2000) Air pollution and vegetation. In: UN/ECE IPC (ed) Annual report 1999/2000 of UN/ECE IPC vegetation. Center for Ecology and Hydrology, BangorGoogle Scholar
  24. Morgan PB, Ainsworth EA, Long SP (2004a) Elevated O3 impact on soybeans, a metaanalysis of photosynthetic, biomass, and yield responses. Plant Cell Environ 26:1317–1328CrossRefGoogle Scholar
  25. Morgan PB, Bernacchi CJ, Ort DR, Long SP (2004b) An in vivo analysis of the effect of season-long open-air elevation of ozone to anticipated 2050 levels on photosynthesis in soybean. Plant Physiol 135:2348–2357PubMedCrossRefGoogle Scholar
  26. Morgan PB, Bollero GA, Nelson RL, Dohleman FG, Long SP (2005a) Smaller than predicted increase in aboveground net primary production and yield of field-grown soybean under fully open-air [CO2] elevation. Global Change Biol 11:1856–1865CrossRefGoogle Scholar
  27. Morgan PB, Bollero GA, Nelson RL, Long SP (2005b) Season-long elevation of ozone concentration by 20 % under fully open-air conditions decreases the growth and production of Midwest soybean crops by ca. 20%. Environ Pollut (in press)Google Scholar
  28. Mulchi CL, Slaughter L, Saleem M, Lee EH, Pausch R, Rowland R (1992) Growth and physiological-characteristics of soybean in open-top chambers in response to ozone and increased atmospheric CO2. Agric Ecosyst Environ 38:107–118CrossRefGoogle Scholar
  29. Pingali PL (2001) Meeting world maize needs: technological opportunities and priorities for the public sector. In: CIMMYT (ed) 1999–2000 World maize facts and trends. CIMMYT, Mexico CityGoogle Scholar
  30. Prather M, Ehhalt D, Dentener F, Derwent R, Dlugokencky E, Holland E, Isaksen I, Katima J, Kirchhoff V, Matson P, Midgley P, Wang M (2001) Atmospheric chemistry and greenhouse gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Linder PJ van der, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 239–280Google Scholar
  31. Prather M, Gauss M, Berntsen T, Isaksen I, Sundet J, Bey I, Brasseur G, Dentener F, Derwent R, Stevenson D, Grenfell L, Hauglustaine D, Horowitz L, Jacob D, Mickley L, Lawrence M, Von Kuhlmann R, Muller J-F, Pitari G, Rogers H, Johnson M, Pyle J, Law K, Van Weele M, Wild O (2003) Fresh air in the 21st century? Geophys Res Let 30:1100, doi: 10.1029/2002GL016285CrossRefGoogle Scholar
  32. Prentice IC, Farquahar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Le Quere C, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linder PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis.Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 183–230Google Scholar
  33. Rogers A, Allen DJ, Davey PA, Morgan PB, Ainsworth EA, Bernacchi CJ, Cornic G, Dermody O, Dohleman FG, Heaton EA, Mahoney J, Zhu X-G, DeLucia EH, Ort DR, Long SP (2004) Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under free-air carbon dioxide enrichment. Plant Cell Environ 27:449–458CrossRefGoogle Scholar
  34. USDA (2004) Crop production 2003 summary. Agricultural Statistics Board, National Agricultural Statistics Service, Washington, D.C.Google Scholar
  35. Vessey JK, Walsh KB, Layzell DB (1988) Oxygen limitation of N2 fixation in stem-girdled and nitrate-treated soybean. Physiol Plant 73:113–121Google Scholar
  36. Whittaker JB (1999) Impacts and responses at population level of herbivorous insects to elevated CO2. Eur J Entomol 96:149–156Google Scholar
  37. Zheng Y, Shimizu H, Barnes JD (2002) Limitations to CO2 assimilation in ozone-exposed leaves of Plantago major. New Phytol 155:67–78CrossRefGoogle Scholar
  38. Ziska LH, Bunce JA (1995) Growth and photosynthetic response of 3 soybean cultivars to simultaneous increases in growth temperature and CO2. Physiol Plant 94:575–584CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • D. R. Ort
    • 1
  • E. A. Ainsworth
    • 1
  • M. Aldea
    • 2
  • D. J. Allen
    • 1
  • C. J. Bernacchi
    • 3
  • M. R. Berenbaum
    • 4
  • G. A. Bollero
    • 5
  • G. Cornic
    • 6
  • P. A. Davey
    • 7
  • O. Dermody
    • 8
  • F. G. Dohleman
    • 5
  • J. G. Hamilton
    • 8
  • E. A. Heaton
    • 5
  • A. D. B. Leakey
    • 9
  • J. Mahoney
    • 10
  • T. A. Mies
    • 11
  • P. B. Morgan
    • 7
  • R. L. Nelson
    • 12
  • B. O’Neil
    • 13
  • A. Rogers
    • 10
  • A. R. Zangerl
    • 13
  • X. -G. Zhu
    • 7
  • E. H. DeLucia
    • 8
  • S. P. Long
    • 14
  1. 1.USDA/ARS, Department of Plant BiologyUniversity of IllinoisUrbanaUSA
  2. 2.Department of Plant BiologyUniversity of IllinoisUrbanaUSA
  3. 3.Center for Atmospheric SciencesIllinois State Water SurveyChampaignUSA
  4. 4.Department of Entomology and Plant BiologyUniversity of IllionoisUrbanaUSA
  5. 5.Department of Crop ScienceUniversity of IllinoisUrbanaUSA
  6. 6.Laboratory D’Écophysiologie VégétaleUniversité Paris XI OrsayParisFrance
  7. 7.Department of Plant BiologyUniversity of IllinoisUrbanaUSA
  8. 8.Department of Plant BiologyUniversity of IllinoisUrbanaUSA
  9. 9.Institute of Genooomic BiologyUniversity of IllionoisUrbanaUSA
  10. 10.Environmental Sciences DepartmentBrookhaven National LaboratoryUptonUSA
  11. 11.Department of Crop SciencesUniversity of IllinoisUrbanaUSA
  12. 12.USDA/ARS, Department of Crop ScienceUniversity of IllinoisUrbanaUSA
  13. 13.Department of EntomologyUniversity of IllinoisUrbanaUSA
  14. 14.Department of Plant BiologyUniversity of IllinoisUrbanaUSA

Personalised recommendations