Skip to main content

FACE Value: Perspectives on the Future of Free-Air CO2 Enrichment Studies

  • Chapter
Managed Ecosystems and CO2

Part of the book series: Ecological Studies ((ECOLSTUD,volume 187))

24.6 Conclusion

Free-air CO2 enrichment studies have been a valuable tool for the investigation of plant and ecosystem responses to rising CO2 levels. The challenges for the next phase of FACE research are clear.

  • Multidisciplinary teams of investigators must take advantage of emerging technologies to significantly increase our mechanistic understanding of the responses that FACE experiments have confirmed will take place during the next century.

  • If we seek the ability to predict and understand how our managed, and natural, ecosystems will respond to the predicted multiple and concurrent changes in our environment, more interactions with other global change factors must be included in future experiments. To meet these challenges, future FACE experiments will need to be larger to accommodate multiple environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharoni A, Vorst O (2002) DNA microarrays for functional genomics. Plant Mol Biol 48: 99–118

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth EA, Davey PA, Hymus GJ, Osborne CP, Rogers A, Blum H, Nosberger J, Long SP (2003) Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under free air CO2 enrichment (FACE). Plant Cell Environ 26: 705–714

    Article  CAS  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of responses to rising CO2 in photosynthesis, canopy properties and plant production. New Phytol 165:351–371

    Article  PubMed  Google Scholar 

  • Allard V, Newton PCD, Lieffering M, Soussana JF, Grieu P, Matthew C (2004) Elevated CO2 effects on decomposition processes in a grazed grassland. Global Change Biol 10:1553–1564

    Article  Google Scholar 

  • Almeida JPF, Lüscher A, Frehner M, Oberson A, Nöberger J, (1999) Partitioning of P and the activity of root acid phosphatase in white clover (Trifolium repens L.) are modified by increased atmospheric CO2 and P fertilization. Plant Soil 210:159–166

    Article  CAS  Google Scholar 

  • Almeida JPF, Hartwig UA, Frehner M, Nösberger J, Lüscher A, (2000) Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). J Exp Bot 51:1289–1297

    Article  PubMed  CAS  Google Scholar 

  • Baggs EM, Richter M, Cadisch G, Hartwig UA (2003a) Denitrification in grass swards is increased under elevated atmospheric CO2. Soil Biol Biochem 35:729–732

    Article  CAS  Google Scholar 

  • Baggs EM, Richter M, Hartwig UA, Cadisch G (2003b) Nitrous oxide emissions from grass swards during the eighth year of elevated atmospheric pCO2 (Swiss FACE). Global Change Biol 9:1214–1222

    Article  Google Scholar 

  • Barnard R, Barthes L, Le Roux X, Leadley PW (2004) Dynamics of nitrifying activities, denitrifying activities and nitrogen in grassland mesocosms as altered by elevated CO2. New Phytol 162:365–376

    Article  CAS  Google Scholar 

  • BassiriRad H, Constable JVH, Lussenhop J, Kimball BA, Norby RJ, Oechel WC, Reich PB, Schlesinger WH, Zitzer S, Sehtiya HL, Silim S (2003) Widespread foliage d15N depletion under elevated CO2: inferences for the nitrogen cycle. Global Change Biol 9:1582–1590

    Article  Google Scholar 

  • Billings SA, Schaeffer SM, Evans RD (2004) Soil microbial activity and N availability with elevated CO2 in Mojave desert soils. Global Biogeochem Cycles 18:1–11

    Article  CAS  Google Scholar 

  • Blanchard JL (2004) Bioinformatics and systems biology, rapidly evolving tools for interpreting plant response to global change. Field Crops Res 90:117–131

    Article  Google Scholar 

  • Carey EV, Sala A, Keane R, Callaway RM (2001) Are old forests underestimated as global sinks? Global Change Biol 7:339–344

    Article  Google Scholar 

  • Cotrufo MF, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biol 4:43–54

    Article  Google Scholar 

  • Coûteaux M-M, Bolger T (2000) Interactions between atmospheric CO2 enrichment and soil fauna. Plant Soil 224:123–134

    Article  Google Scholar 

  • Cubasch U, Meehl GA (2001) Projections of future climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden PJ van der, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 527–582

    Google Scholar 

  • Dacey JWH, Drake BG, Klug MJ (1994) Stimulation of methane emissions by carbon dioxide enrichment of marsh vegetation. Nature 370:47–49

    Article  CAS  Google Scholar 

  • Del Galdo I, Six J, Peressotti A, Cotrufo MF (2003) Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Global Change Biol 9:1204–1213

    Article  Google Scholar 

  • Drake BG, Gonzàlez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol Plant Mol Biol 48:609–639

    Article  PubMed  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Finzi AC, Delucia EH, Hamilton JG, Richter DD, Schlesinger WH (2002) The nitrogen budget of a pine forest under free air CO2 enrichment. Oecologia 132:567–578

    Article  Google Scholar 

  • Foyer CH, Parry M, Noctor G (2003) Markers and signals associated with nitrogen assimilation in higher plants. J Exp Bot 54:585–593

    Article  PubMed  CAS  Google Scholar 

  • Gibon Y, Blaesing OE, Hannemann J, Carillo P, Höhne M, Hendriks JHM, Palcios N, Cross J, Selbig J, Stitt M. (2004) A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16:3304–3325

    Article  PubMed  CAS  Google Scholar 

  • Hanson PJ, Wullschleger SD, Norby RJ, Tschaplinski TJ, Gunderson CA (2005) Importance of changing CO2, temperature, precipitation, and ozone on carbon and water cycles of an upland-oak forest: incorporating experimental results into model simulations. Global Change Biol 11:1402–1423

    Article  Google Scholar 

  • Hungate BA, Holland EA, Jackson RB, Chapin FS, Mooney HA, Field CB (1997) The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388:576–579

    Article  CAS  Google Scholar 

  • Ineson P, Coward PA, Hartwig UA (1998) Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: The Swiss free air carbon dioxide enrichment experiment. Plant Soil 198:89–95

    Article  CAS  Google Scholar 

  • Inubushi K, Cheng WG, Aonuma S, Hoque MM, Kobayashi K, Miura S, Kim HY, Okada M (2003) Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Global Change Biol 9:1458–1464

    Article  Google Scholar 

  • Izaurralde RC, Rosenberg NJ, Brown RA, Thomson AM (2003) Integrated assessment of Hadley Center (HadCM2) climate-change impacts on agricultural productivity and irrigation water supply in the conterminous United States. Agric For Meteorol 117:97–122

    Article  Google Scholar 

  • Kammann C, Grünhage L, Grüters U, Janze S, Jäger H-J (2005) Response of aboveground grassland biomass and soil moisture to moderate long-term CO2 enrichment. Basic Appl Ecol 6:351–365

    Article  CAS  Google Scholar 

  • Karnosky DF, Mankovska B, Percy K, Dickson RE, Podila GK, Sober J, Noormets A, Hendrey GR, Coleman MD, Kubiske M, Pregitzer KS, Isebrands JG (1999). Effects of tropospheric O3 on trembling aspen and interaction with CO2: Results from an O3-gradient and a FACE experiment. J Water Air Soil Pollut 116:311–322

    Article  CAS  Google Scholar 

  • Kersten B, Buerkle L, Kuhn EJ, Giavalisco P, Konthur Z, Lueking A, Walter G, Eickhoff H, Schneider U (2002) Large-scale plant proteomics. Plant Mol Biol 48:133–141

    Article  PubMed  CAS  Google Scholar 

  • Kessel C van, Horwath WR, Hartwig U, Harris D, Lüscher A (2000) Net soil carbon input under ambient and elevated CO2 concentrations: isotopic evidence after 4 years. Global Change Biol 6:435–444

    Article  Google Scholar 

  • Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–368

    Article  Google Scholar 

  • Kimball BA, Pinter PJ, Garcia RL, LaMorte RL, Wall GW, Hunsaker DJ, Wechsung G, Wechsung F, Kartschall T (1995) Productivity and water use of wheat under free-air Co2 enrichment. Global Change Biol 1:429–442

    Article  Google Scholar 

  • King JS, Hanson PJ, Bernhardt E, DeAngelis P, Norby RJ, Pregitzer KS. 2004. A multi-year synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Global Change Biol 10:1027–1042

    Article  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  PubMed  CAS  Google Scholar 

  • Kopka J, Fernie A, Weckwerth W, Gibon Y, Stitt M (2004) Metabolite profiling in plant biology: platforms and destinations. Genome Biol 5:109

    Article  PubMed  Google Scholar 

  • Leakey ADB, Bernacchi CJ, Dohleman FG, Ort DR, Long SP (2004) Will photosynthesis of maize in the US Corn Belt increase in future [CO2] rich atmospheres? An analysis of diurnal courses of CO2 uptake under free-air concentration enrichment (FACE). Global Change Biol 10:951–962

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    Article  PubMed  CAS  Google Scholar 

  • Long SP Woodward FI (1988) Plants and temperature. Symposium of the Society for Experimental Biology, Cambridge University Press, Cambridge

    Google Scholar 

  • Lukac M, Calfapietra C, Godbold DL (2003) Production, turnover and mycorrhizal colonization of root systems of three Populus species grown under elevated CO2 (POPFACE). Global Change Biol 9:838–848

    Article  Google Scholar 

  • Luo Y, Reynolds JF (1999) Validity of extrapolating field CO2 experiments to predict carbon sequestration in natural ecosystems. Ecology 80:1568–1583

    Google Scholar 

  • Marchi S, Tognetti R, Vaccari FP, Lanini M, Kaligaric M, Miglietta F, Raschi A (2004) Physiological and morphological responses of grassland species to elevated atmospheric CO2 (concentrations in FACE-systems and natural CO2 springs. Funct Plant Biol 31:181–194

    Article  CAS  Google Scholar 

  • Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki S, Fredricksen M, Hollis KC, Poroyko V, Shepley D, Galbraith DW, Long SP, Bohnert HJ (2004) Transcript expression profiles of Arabidopsis thaliana grown under controlled conditions and open-air elevated concentrations of CO2 and of O3. Field Crops Res 90:47–59

    Article  Google Scholar 

  • Montealegre CM, van Kessel C, Blumenthal JM, Hur HG, Hartwig UA, Sadowsky MJ (2000) Elevated atmospheric CO2 alters microbial population structure in a pasture ecosystem. Global Change Biol 6:475–482

    Article  Google Scholar 

  • Morgan PB, Bernacchi CJ, Ort DR, Long SP (2004) An in vivo analysis of the effect of season-long open-air elevation of ozone to anticipated 2050 levels on photosynthesis in soybean. Plant Physiol 135:2348–2357

    Article  PubMed  CAS  Google Scholar 

  • Morison JIL, Lawlor DW (1999) Interactions between increasing CO2 concentrations and temperature on plant growth. Plant Cell Environ 22:659–682

    Article  CAS  Google Scholar 

  • Müller C, Stevens RJ, Laughlin RJ (2004) A 15N tracing model to analyse N transformations in old grassland soil. Soil Biol Biochem 36:619–632

    Article  CAS  Google Scholar 

  • Newton PCD, Carran RA, Lawrence EJ (2004) Reduced water repellency of a grassland soil under elevated atmospheric CO2. Global Change Biol 10:1–4

    Article  Google Scholar 

  • Newton PCD, Clark H, Edwards GR, Ross DJ (2001) Experimental confirmation of ecosystem model predictions comparing transient and equilibrium plant responses to elevated atmospheric CO2. Ecol Lett 4:344–347

    Article  Google Scholar 

  • Niklaus PA, Körner C (2004) Synthesis of a six-year study of calcareous grassland responses to in situ CO2 enrichment. Ecol Monogr 74:491–511

    Google Scholar 

  • Nijs I, Teughels H, Blum H, Hendrey G, Impens I (1996) Simulation of climate change with infrared heaters reduces the productivity of Lolium perenne L. in summer. Environ Exp Bot 36:271–280

    Article  Google Scholar 

  • Norby RJ, Cotrufo MF (1998) Global change — a question of litter quality. Nature 396:17–18

    Article  CAS  Google Scholar 

  • Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165

    Article  Google Scholar 

  • Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2 — do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162: 253–280

    Article  Google Scholar 

  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schäfer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472

    Article  PubMed  CAS  Google Scholar 

  • Ostle N, Ineson P, Benham D, Sleep D (2000) Carbon assimilation and turnover in grassland vegetation using an in situ 13CO2 pulse labelling system. Rapid Commun Mass Spectrom 14:1345–1350

    Article  PubMed  CAS  Google Scholar 

  • Pendall E (2002) Where does all the carbon go? The missing sink. New Phytol 153:207–210

    Article  Google Scholar 

  • Prather M, Ehhalt D (2001) Atmospheric chemistry and green house gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden PJ van der, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 241–287

    Google Scholar 

  • Prentice IC (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden PJ van der, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 183–238

    Google Scholar 

  • Phillips RL, Whalen SC, Schlesinger WH (2001a) Influence of atmospheric CO2 enrichment on methane consumption in a temperate forest soil. Global Change Biol 7:557–563

    Article  Google Scholar 

  • Phillips RL, Whalen SC, Schlesinger WH (2001b) Influence of atmospheric CO2 enrichment on nitrous oxide flux in a temperate forest ecosystem. Global Biogeochem Cycles 15:741–752

    Article  CAS  Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    Article  PubMed  CAS  Google Scholar 

  • Rasse DP, Peresta G, Drake BG (2005) Seventeen years of elevated CO2 exposure in a Chesapeake Bay wetland: sustained but contrasting responses of plant growth and CO2 uptake. Global Change Biol 11:369–377

    Article  Google Scholar 

  • Richter M, Hartwig UA, Frossard E, Nösberger J, Cadisch G (2003) Gross fluxes of nitrogen in grassland soil exposed to elevated atmospheric pCO2 for seven years. Soil Biol Biochem 35:1325–1335

    Article  CAS  Google Scholar 

  • Rillig MC, Wright SF, Kimball BA, Pinter PJ, Wall GW, Ottman MJ, Leavitt SW (2001) Elevated carbon dioxide and irrigation effects on water stable aggregates in a Sorghum field: a possible role for arbuscular mycorrhizal fungi. Global Change Biol 7:333–337

    Article  Google Scholar 

  • Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162

    Article  PubMed  Google Scholar 

  • Rogers A, Humphries H (2000) A mechanistic evaluation of photosynthetic acclimation at elevated CO2. Global Change Biol 6:1005–1011

    Article  Google Scholar 

  • Ross DJ, Tate KR, Newton PCD, Wilde RH, Clark H (2000) Carbon and nitrogen pools and mineralization in a grassland gley soil under elevated carbon dioxide at a natural CO2 spring. Global Change Biol 6:779–790

    Article  Google Scholar 

  • Saarnio S, Saarinen T, Vasander H, Silvola J (2000) A moderate increase in the annual CH4 efflux by raised CO2 or NH4NO3 supply in a boreal oligotrophic mire. Global Change Biol 6:137–144

    Article  Google Scholar 

  • Schulze ED, Wirth C, Heimann M (2000) Managing forests after Kyoto. Science 289:2058–2059

    Article  PubMed  CAS  Google Scholar 

  • Staddon PL, Ramsey CB, Ostle N, Ineson P, Fitter AH (2003) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science 300:1138–1140

    Article  PubMed  CAS  Google Scholar 

  • Strain BR, Bazzaz FA (1983) Terrestrial plant communities. In: Lemon E (ed) CO2 and plants: the response of plants to rising levels of atmospheric carbon dioxide. AAAS Selected Symposium 84. AAAS, Washington, D.C., pp 177–222

    Google Scholar 

  • Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669–689

    Article  PubMed  CAS  Google Scholar 

  • Wright SF, Anderson RL (2000) Aggregate stability and glomalin in alternative crop rotations for the central Great Plains. Biol Fertil Soils 31:249–253

    Article  CAS  Google Scholar 

  • Wullschleger SD (1993) Biochemical limitations to carbon assimilation in C3 plants — a reterospective analaysis of the A/Ci curves from 109 species. J Exp Bot 44:907–920

    CAS  Google Scholar 

  • Yeates GW, Newton PCD, Ross DJ (2003) Significant changes in soil microfauna in grazed pasture under elevated carbon dioxide. Biol Fertil Soils 38:319–326

    Article  Google Scholar 

  • Zak DR, Pregitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol 147:201–222

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rogers, A., Ainsworth, E.A., Kammann, C. (2006). FACE Value: Perspectives on the Future of Free-Air CO2 Enrichment Studies. In: Nösberger, J., Long, S.P., Norby, R.J., Stitt, M., Hendrey, G.R., Blum, H. (eds) Managed Ecosystems and CO2 . Ecological Studies, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31237-4_24

Download citation

Publish with us

Policies and ethics