Advertisement

The Influence of Elevated [CO2] on Diversity, Activity and Biogeochemical Functions of Rhizosphere and Soil Bacterial Communities

  • S. Tarnawski
  • M. Aragno
Part of the Ecological Studies book series (ECOLSTUD, volume 187)

Keywords

Bacterial Community Bulk Soil Rhizosphere Soil Perennial Grass White Clover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aragno M (2005) The rhizosphere: a hot spot of bacterial diversity. In: Satyanarayana T, Johri BN (eds) Microbial diversity: current perspectives and potential applications. I.K. International Publishing House, New DelhiGoogle Scholar
  2. Baggs EM, Blum H (2004) CH4 oxidation and emissions of CH4 and N2O from Lolium perenne swards under elevated atmospheric CO2. Soil Biol Biochem 36:713–723CrossRefGoogle Scholar
  3. Baggs EM, Richter M, Cadish G, Hartwig UA (2003) Denitrification in grass swards is increased under elevated atmospheric CO2. Soil Biol Biochem 35:729–732CrossRefGoogle Scholar
  4. Barnard R, Barthes L, Le Roux X, Leadley PW (2004) Dynamics of nitrifying activities, denitrifying activities and nitrogen in grassland mesocosms as altered by elevated CO2. New Phytol 162:365–376CrossRefGoogle Scholar
  5. Clarholm M (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem 17:181–187CrossRefGoogle Scholar
  6. Clarholm M (1989) Effects of plant-bacterial-amoebal interactions on plant uptake of nitrogen under field conditions. Biol Fertil Soils 8:373–378CrossRefGoogle Scholar
  7. Clays-Josserand A, Lemanceau P, Philippot L, Lensi R (1995) Influence of two plant species (flax and tomato) on nitrogen dissimilative abilities within fluorescent Pseudomonas spp. Appl Environ Microbiol 61:1745–1749PubMedGoogle Scholar
  8. Clays-Josserand A, Ghiglione JF, Philippot L, Lemanceau P, Lensi R (1999) Effect of soil type and plant species on the fluorescent peudomonads nitrate dissimilating community. Plant Soil 209:275–282CrossRefGoogle Scholar
  9. Delorme S, Philippot L, Edel-Hermann V, Deulvot C, Mougel C, Lemanceau P (2003) Comparative genetic diversity of the narG, nosZ and 16S rRNA genes in fluorescent pseudomonads. Appl Environ Microbiol 69:1004–1012PubMedCrossRefGoogle Scholar
  10. Elad Y, Baker R (1985) The role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium oxysporum by Pseudomonas spp. Phytopathology 75:1053–1059CrossRefGoogle Scholar
  11. Elhottova D, Tríska J, Santruckova H, Kveton J, Santrucek J, Simkova M (1997) Rhizosphere microflora of winter wheat plants cultivated under elevated CO2. Plant Soil 197:251–259CrossRefGoogle Scholar
  12. Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev 63:433–462Google Scholar
  13. Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P (2002) Statistical analyses of denaturating gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 4:634–643PubMedCrossRefGoogle Scholar
  14. Fromin N, Tarnawski S, Roussel-Delif L, Hamelin J, Baggs EM, Aragno M (2005) Nitrogen fertilisation rate alters the frequency of nitrate-dissimilating Pseudomonas spp. in the rhizosphere of Lolium perenne grown under elevated pCO2 (Swiss FACE). Soil Biol Biochem 37:1962–1965CrossRefGoogle Scholar
  15. Garbaye J (1994) Helper bacteria — a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210CrossRefGoogle Scholar
  16. Ginkel JH van, Gorissen A (1998) In situ decomposition of grass roots as affected by elevated atmospheric carbon dioxide. Soil Sci Soc Am J 62:951–958CrossRefGoogle Scholar
  17. Ginkel JH van, Gorissen A, Polci D (2000) Elevated atmospheric carbon dioxide concentration: effects of increased carbon input in a Lolium perenne soil on microorganisms and decomposition. Soil Biol Biochem 32:449–456CrossRefGoogle Scholar
  18. Gobat JM, Aragno M, Matthey W (2004) The living soil: fundamentals of soil science and soil biology. Science Publishers, EnfieldGoogle Scholar
  19. Griffiths BS, Ritz K, Ebblewhite N, Paterson E, Killham K (1998) Ryegrass rhizosphere microbial community structure under elevated carbon dioxide concentrations, with observations on wheat rhizosphere. Soil Biol Biochem 30:315–321CrossRefGoogle Scholar
  20. Hamelin J (2004) PhD thesis, University of Neuchâtel, NeuchâtelGoogle Scholar
  21. Hamelin J, Fromin N, Tarnawski S, Teyssier-Cuvelle S, Aragno M (2002) NifH gene diversity in the bacterial community associated with the rhizosphere of Molinia coerulea, an oligonitrophilic perennial grass. Environ Microbiol 4:477–482PubMedCrossRefGoogle Scholar
  22. Hartwig UA, Zanetti S, Hebeisen T, Lüscher A, Frehner M, Fischer B, Kessel C van, Hendrey GR, Blum H, Nösberger J (1996) Symbiotic nitrogen fixation: one key to understanding the response of temperate grassland ecosystem to elevated CO2? In: Körner C, Bazzaz FA (eds) Community, population and evolutionary responses to elevated CO2 concentration. Academic Press, New York, pp 253–264Google Scholar
  23. Hodge A, Paterson E, Grayston SJ, Campbell CD, Ord BG, Killham K (1998) Characterisation and microbial utilisation of exudate material from the rhizosphere of Lolium perenne grown under CO2 enrichment. Soil Biol Biochem 30:1033–1043CrossRefGoogle Scholar
  24. Hu S, Firestone M, Chapin FS (1999) Soil microbial feedbacks to atmospheric CO2 enrichment. Tree 14:433–437PubMedGoogle Scholar
  25. Hu S, Chapin, FS, Firestone MK, Field CB, Chiariello NR (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409:188–191PubMedCrossRefGoogle Scholar
  26. Hungate BA, Jaeger CH, Gamara G, Chapin FS, Field CB (2000) Soil microbiota in two annual grasslands: responses to elevated atmospheric CO2. Oecologia 124:589–598CrossRefGoogle Scholar
  27. Ineson P, Coward PA, Hartwig UA (1998) Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: the Swiss free air carbon dioxide enrichment experiment. Plant Soil 198:89–95CrossRefGoogle Scholar
  28. Insam H, Baath E, Berreck M, Frostegard A, Gerzabek MH, Kraft A, Schinner F, Schweiger P, Tschuggnall G (1999) Responses of the soil microbiota to elevated CO2 in an artificial tropical ecosystem. J Microbiol Methods 36:45–54PubMedCrossRefGoogle Scholar
  29. Jongen M, Jones MB, Hebeisen T, Blum H, Hendrey GR (1995) The effects of elevated CO2 concentrations on the root growth of Lolium perenne and Trifolium repens grown in a FACE system. Global Change Biol 1:361–371CrossRefGoogle Scholar
  30. Jossi M, Hamelin J, Tarnawski S, Gillet F, Kohler F, Aragno M, Fromin N (2006) How does elevated pCO2 modify total and metabolicaly active bacterial communivites in the rhizosphere of two perrennial grasses grown in field conditions? FEMS Microbiol Ecol 55:339–350PubMedCrossRefGoogle Scholar
  31. Kandeler E, Tscherko D, Hobbs PJ, Kampichler V, Jones TH (1998) The response of soil microorganisms and roots to elevated CO2 and temperature in a terrestrial model ecosystem. Plant Soil 202:251–262CrossRefGoogle Scholar
  32. Kelly JJ, McCormack J, Janus LR, Angeloni N, Rier ST, Tuchman NC (2003) Elevated atmospheric CO2 alters belowground micobial communities associated with quaking aspen roots. Abstr Gen Meet Am Soc Microbiol 103:N–017Google Scholar
  33. Klironomos JN, Allen MF, Rillig MC, Piotrowski J, Makvandi-Nejad S, Wolfe BE, Powell JR (2005) Abrupt rise in atmospheric CO2 overestimates community response in a model plant-soil system. Nature 433: 621–624PubMedCrossRefGoogle Scholar
  34. Kuzyakov Y (2001) Tracer studies of carbon translocation by plants from the atmosphere into the soil (a review). Eurasian Soil Sci 34, 28–42Google Scholar
  35. Lugtenberg BJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13PubMedCrossRefGoogle Scholar
  36. Lussenhop J, Treonis A, Curtis PS, Teeri JA, Vogel CS (1998) Response of soil biota to elevated atmospheric CO2 in poplar model systems. Oecologia 113:247–251CrossRefGoogle Scholar
  37. Marilley L, Aragno M (1999) Phylogenetic diversity of bacterial communities difffering in degree of proximity of Lolium perenne and Trifolium repens. Appl Soil Ecol 13:127–136CrossRefGoogle Scholar
  38. Marilley L, Vogt G, Blanc M, Aragno M (1998) Bacterial diversity in the bulk soil and rhizosphere fractions of Lolium perenne and Trifolium repens as revealed by PCR restriction analysis of 16s rDNA. Plant Soil 198:219–224CrossRefGoogle Scholar
  39. Marilley L, Hartwig UA, Aragno M (1999) Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microb Ecol 38:39–49PubMedCrossRefGoogle Scholar
  40. Montealegre CM, Kessel C van, Blumenthal JM, Hur HG, Hartwig UA, Sadowsky MJ (2000) Elevated atmospheric CO2 alters microbial population structure in pasture ecosystem. Global Change Biol 6:475–482CrossRefGoogle Scholar
  41. Montealegre CM, Kessel C van, Blumenthal JM, Hur HG, Hartwig UA, Sadowski MJ (2002) Changes in microbial activity and composition in a pasture ecosystem exposed to elevated atmospheric carbon dioxide. Plant Soil 243:187–207CrossRefGoogle Scholar
  42. Mulder A, Vandegraaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiol Ecol 16, 177–183CrossRefGoogle Scholar
  43. Paterson E (2003) Importance of rhizodeposition in the coupling of plant and microbial productivity. Eur J Soil Sci 2003:54Google Scholar
  44. Paterson E, Hall JM, Rattray EAS, Griffiths BS, Ritz K, Killham K (1997) Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes. Global Change Biol 3:363–377CrossRefGoogle Scholar
  45. Richter M (2003) PhD thesis, ETH-Z, ZürichGoogle Scholar
  46. Richter M, Hartwig UA, Frossard E, Noesberger J, Cadisch G (2003) Gross fluxes of nitrogen in grassland soils exposed to elevated atmospheric pCO2 for seven years. Soil Biol Biochem 22:1325–1335CrossRefGoogle Scholar
  47. Rillig MC, Wright SF, Allen MF, Field CB (1999) Rise in carbon dioxide changes soil structure. Nature 400:628CrossRefGoogle Scholar
  48. Roussel-Delif L, Tarnawski S, Hamelin J, Philippot L, Aragno M, Fromin N (2005) Frequency and diversity of nitrate reductase genes among nitrate-dissimilating Pseudomonas in the rhizosphere of perennial grasses grown in field conditions. Microb Ecol 49:63–72PubMedCrossRefGoogle Scholar
  49. Salmassi TM, Ayala EA, Barco RA, Becerra C, Chakhalyan MM, Connor KM, Cuevas G, Dolmajian HK, Hirun MS, Lam RG, Martinez AE, Martinez JG, Mendosa RY, Moshkani S, Nguyen JQ, Ovasapyan K, Shin CS, Sok D, West KL, Wong NJ, Wu RC, Monterosa A, Khachikian CS (2003) Effects of elevated CO2 on soil bacterial diversity: a comparative study at Mammoth Mountain, Ca. Abstr Gen Meet Am Soc Microbiol 103:N–116Google Scholar
  50. Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248PubMedCrossRefGoogle Scholar
  51. Tarnawski S (2004) PhD thesis, University of Neuchâtel, NeuchâtelGoogle Scholar
  52. Williams MA, Rice CW, Owensby CE (2000) Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years. Plant Soil 227:127–137CrossRefGoogle Scholar
  53. Yeates GW, Tate KR, Newton PCD (1997) Response of the fauna of a grassland soil to doubling of atmospheric carbon dioxide concentration. Biol Fertil Soils 25:307–315CrossRefGoogle Scholar
  54. Zak DR, Ringelberg DB, Pregitzer KS, Randlett DL, White DC, Curtis PS (1996) Soil microbial communities beneath Populus grandidentata Michx. grown under elevated atmospheric CO2. Ecol Appl 6:257–262Google Scholar
  55. Zak DR, Pregitzer KS, Curtis PS, Holmes WE (2000a) Atmospheric CO2 and the composition and function of soil microbial communities. Ecol Appl 10:47–59Google Scholar
  56. Zak DR, Pregitzer KS, King JS, Holmes WE (2000b) Elevated atmospheric CO2, fine roots and the response of soil microroganisms: a review and hypothesis. New Phytol 147:201–222CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • S. Tarnawski
    • 1
  • M. Aragno
    • 1
  1. 1.Laboratoire de MicrobiologieInstitut de BotaniqueNeuchâtelSwitzerland

Personalised recommendations