Skip to main content

The Impact of Elevated Atmospheric [CO2] on Soil C and N Dynamics: A Meta-Analysis

  • Chapter
Managed Ecosystems and CO2

Part of the book series: Ecological Studies ((ECOLSTUD,volume 187))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DC, Gurevitch J, Rosenberg MS (1997) Resampling tests for meta-analysis of ecological data. Ecology 78:1277–1283

    Article  Google Scholar 

  • Ainsworth EA, Davey PA, Bernacchi CJ, Dermody OC, Heaton EA, Moore DJ, Morgan PB, Naidu SL, Yoo RA HS, Zhu XG, Curtis PS, Long SP (2002) A meta-analysis of elevated CO2 effects on soybean (Glycine max) physiology, growth and yield. Global Change Biol 8:695–709

    Article  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  PubMed  Google Scholar 

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soil. Soil Biol Biochem 10:215–221

    Article  CAS  Google Scholar 

  • Bazzaz FA, Fajer ED (1990) Plant life in a CO2-rich world. Sci Am 266:68–74

    Article  Google Scholar 

  • Billings SA, Schaeffer SM, Evans RD (2002) Trace N gas losses and N mineralization in Mojave desert soils exposed to elevated CO2. Soil Biol Biochem 34:1777–1784

    Article  CAS  Google Scholar 

  • Curtis PS, Wang XZ (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form and physiology. Oecologia 113:299–313

    Article  Google Scholar 

  • De Graaff MA, Van Groenigen KJ, Six J, Hungate BA, Van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Global Change Biol (in press)

    Google Scholar 

  • Diaz S, Grime JP, Harris J, McPherson E (1993) Evidence of a feedback mechanismlimiting plant response to elevated carbon dioxide. Nature 363:616–617

    Article  Google Scholar 

  • Ebersberger D, Niklaus PA, Kandeler E (2003) Long term CO2 enrichment stimulates Nmineralisation sand enzyme activities in calcareous grassland. Soil Biol Biochem 35:965–972

    Article  CAS  Google Scholar 

  • Gifford RM (1994) The global carbon cycle: a viewpoint on the missing sink. Aust J Plant Physiol 21:1–15

    Article  Google Scholar 

  • Hagedorn F, Bucher JB, Tarjan D, Rusert P, Bucher-Waillin I (2000) Responses of N fluxes and pools to elevated atmospheric CO2 in model forest ecosystems with acidic and calcareous soils. Plant Soil 224:273–286

    Article  CAS  Google Scholar 

  • Hagedorn F, Maurer S, Egli P, Blaser P, Bucher JB, Siegwolf R (2001) Carbon sequestration in forest soils: effect of soil type, atmospheric CO2 enrichment, and N deposition. Eur J Soil Sci 52:619–628

    Article  CAS  Google Scholar 

  • Hagedorn F, Blaser P, Siegwolf F (2002) Elevated atmospheric CO2 and increased N deposition effects on dissolved organic carbon-clues from δ13C signature. Soil Biol Biochem 34:355–366

    Article  CAS  Google Scholar 

  • Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic, New York

    Google Scholar 

  • Hendrey GR (1993) Free-air carbon dioxide enrichment for plant research in the field. Smoley, Boca Raton, Fla.

    Google Scholar 

  • Hoosbeek MR, Lukac M, Van Dam D, Godbold DL, Velthorst EJ, Biondi FA, Peressotti A, Cotrufo MF, Angelis P de, Scarascsia-Mugnozza G (2004) More new carbon in the mineral soil of a poplar plantation under free air carbon enrichment (PopFACE): cause of increased priming effect? Global Biogeochem Cycles 18:GB1040

    Article  CAS  Google Scholar 

  • Hu S, Chapin FS, Firestone MK, Field CB, Chiariello NR (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409:188–191

    Article  PubMed  CAS  Google Scholar 

  • Hungate BA, Jackson, RB, Field CB, Chapin FS III (1996) Detecting changes in soil carbon in CO2 enrichment experiments. Plant Soil 187:15–145

    Google Scholar 

  • Hungate BA, Holland EA, Jackson RB, Chapin FS III, Mooney HA, Field CB (1997a) The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388:576–579

    Article  CAS  Google Scholar 

  • Hungate BA, Lund CP, Pearson HL, Chapin FS III (1997b) elevated CO2 and nutrient addition alter soil N cycling and N trace gas fluxes with early weason wet-up in a California annual grassland. Biogeochemistry 37:89–109

    Article  CAS  Google Scholar 

  • Hungate BA, Dijkstra P, Johnson DW, Hinkle CR, Drake BG (1999) Elevated CO2 increase N2 fixation and decreases soil nitrogen mineralization in Florida scrub oak. Global Change Biol 5:781–789

    Article  Google Scholar 

  • Hungate BA, Dukes JS, Shaw R, Luo Y, Field CB (2004a) Nitrogen and climate change. Science 302:1512–1513

    Article  Google Scholar 

  • Hungate BA, Stiling PD, Dijkstra P, Johnson DW, Ketterer ME, Hymus GJ, Hinkle CR, Drake BG (2004b) CO2 elicits long-term decline in nitrogen fixation. Science 304:1291–1291

    Article  PubMed  CAS  Google Scholar 

  • Jastrow JD, Miller RM, Matamala R, Norby RJ, Boutton TW, Rice CW, Owensby CE (2005) Elevated atmospheric carbon dioxide increases soil carbon. Global Change Biol 11:2057–2064

    Article  Google Scholar 

  • Johnson DW, Cheng W, Joslin JD, Norby RJ, Edwards NT, Todd DE (2004) Effects of elevated CO2 on nutrient cycling in a sweetgum plantation. Biogeochemistry 69:379–403

    Article  CAS  Google Scholar 

  • Jones MB, Donnelly A (2004) Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol 164:423–439

    Article  Google Scholar 

  • Körner C, Asshoff R, Bignucolo O, Hattenschwiler S, Keel SG, Pelaez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54:731–739

    Article  Google Scholar 

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin III FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443

    Article  PubMed  CAS  Google Scholar 

  • Mikan CJ, Zak DR, Kubiske ME, Pregitzer KS (2000) Combined effects of atmospheric CO2 and N availability on the belowground carbon and nitrogen dynamics of aspen mesocosms. Oecologia 124:432–445

    Article  Google Scholar 

  • Mosier AR, Pendall E, Morgan JA (2003) Effect of water addition and nitrogen fertilization on the fluxes of CH4, CO2, NOx, and N2O following five years of elevated CO2 in the Colorado shortgrass steppe. Atmos Chem Phys 3:1703–1708

    Article  CAS  Google Scholar 

  • Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD (2002) Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419:915–917

    Article  PubMed  CAS  Google Scholar 

  • Niklaus PA, Körner C (1996) Responses of soil microbiota of a late successional alpine grassland to long term CO2 enrichment. Plant Soil 184:219–229

    Article  CAS  Google Scholar 

  • Niklaus PA, Körner C (2004) Synthesis of a six-year study of calcareous grassland responses to in situ CO2 enrichment. Ecol Monogr 74:491–511

    Google Scholar 

  • Niklaus PA, Leadly PW, Stocklin J, Körner C (1998) Nutrient relations in calcareous grassland under elevated CO2. Oecologia 116:67–75

    Article  Google Scholar 

  • Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165

    Article  Google Scholar 

  • Oren R, Ellisworth DS, Johnson KH, Phillips N, Ewers BE, Maier C, Schafer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2 enriched atmosphere. Nature 411:466–469

    Article  Google Scholar 

  • Parsons WFJ, Lindroth RL, Bockheim JG (2004) Decomposition of Betula papyrifera leaf litter under the independent and interactive effects of elevated CO2 and O3. Global Change Biol 10:1666–1677

    Article  Google Scholar 

  • Paterson E, Rattray EAS, Killham K (1996) Effect of elevated atmospheric CO2 concentration on C-partitioning and rhizosphere C-flow for three plant species. Soil Biol Biochem 28:195–201

    Article  CAS  Google Scholar 

  • Paustian K, Six J, Elliott ET, Hunt HW (2000) Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 48:147–163

    Article  CAS  Google Scholar 

  • Pendall E, Del Grosso S, King JY, LeCain DR, Milchunas DG, Morgan JA, Mosier AR, Ojima DS, Parton WA, Tans PP, White JWC (2003) Elevated atmospheric CO2 effects and soil water feedbacks on soil respiration components in a Colorado grassland. Global Biogeochem Cycles 17:GB1046

    Article  CAS  Google Scholar 

  • Pendall E, Mosier AR, Morgan JA (2004) Rhizodeposition stimulated by elevated CO2 in a semiarid grassland. New Phytol 162:447–458

    Article  Google Scholar 

  • Pepin S, Körner C (2002) Web-FACE: a new canopy free-air CO2 enrichment system for tall trees in mature forests. Oecologia 133:1–9

    Article  Google Scholar 

  • Prior SA, Torbert HA, Runion GB, Rogers HH, Wood CW, Kimball BA, LaMorte RL, Pinter PJ, Wall GW (1997) Free-air carbon dioxide enrichment of wheat: soil carbon and nitrogen dynamics. J Environ Qual 26:1161–1166

    Article  CAS  Google Scholar 

  • Prior SA, Runion GB, Torbert HA, Rogers HH (2004) Elevated atmospheric CO2 in agroecosystems: soil physical properties. Soil Sci 169:434–439

    Article  CAS  Google Scholar 

  • Prior SA, Runion GB, Rogers HH, Torbert HA, Reeves DW (2005) Elevated atmospheric CO2 effects on biomass production and soil carbon in conventional and conservation cropping systems. Global Change Biol 11:657–665

    Article  Google Scholar 

  • Reich PB, Knops J, Tillman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedink D, Naeem S, Bahauddin D, Hendrey G, Jose S, Wrage K, Goth J, Bengston W (2001) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410:809–812

    Article  PubMed  CAS  Google Scholar 

  • Rice CW, Garcia FO, Hampton CO, Owensby CE (1994) Soil microbial response in tallgrass prairie to elevated CO2. Plant Soil 165:67–74

    Article  CAS  Google Scholar 

  • Rillig MC, Wright SF, Allen MF, Field CB (1999) Rise in carbon dioxide changes soil structure. Nature 400:628–628

    Article  CAS  Google Scholar 

  • Rillig MC, Hernandez GY, Newton PCD (2000) Arbuscular mycorrhizae respond to elevated atmospheric CO2 after long-term exposure: evidence from a CO2 spring in New Zealand supports the resource balance model. Ecol Lett 3:475–478

    Article  Google Scholar 

  • Rogers HH, Heck WW, Heagle AS (1983) A field technique for the study of plantresponses to elevated carbon-dioxide concentrations. J Air Pollut Control Assoc 33:42–44

    CAS  Google Scholar 

  • Rosenberg MS, Adams DC, Gurevitch J (2000) MetaWin, statistical software for metaanalysis, ver 2. Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Ross DJ, Newton PCD, Tate KR (2004) Elevated [CO2] effects on herbage production and soil carbon and nitrogen pools and mineralization in a species-rich, grazed pasture on a seasonally dry sand. Plant Soil 260:183–196

    Article  CAS  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic, San Diego, Calif.

    Google Scholar 

  • Schlesinger WH, Lichter J (2001) Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411:466–469

    Article  PubMed  CAS  Google Scholar 

  • Six J, Carpentier A, Kessel C van, Merckx R, Harris D, Horwath WR, Luscher A (2001) Impact of elevated CO2 on soil organic matter dynamics as related to changes in aggregate turnover and residue quality. Plant Soil 234:27–36

    Article  CAS  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176

    Article  CAS  Google Scholar 

  • Thornley JHM, Cannell MGR (2000) Dynamics of mineral N availability in grassland ecosystems under increased [CO2]: hypotheses evaluated using the Hurley pasture model. Plant Soil 224:153–170

    Article  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass-C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Van Kessel C, Boots B, de Graaff MA Harris D, Blum H, Six J (2006) Soil C and N sequestration in a grassland following 10 years of free air CO2 enrichment. Global Change Biol (in press)

    Google Scholar 

  • Williams MA, Rice CW, Owensby CE (2000) Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years. Plant Soil 227:127–137

    Article  CAS  Google Scholar 

  • Williams MA, Rice CW, Owensby CE (2001) Nitrogen competition in a tallgrass prairie ecosystem exposed to elevated carbon dioxide. Soil Sci Soc Am J 65:340–346

    Article  CAS  Google Scholar 

  • Wood CW, Torbert HA, Rogers HH, Runion GB, Prior SA (1994) Free-air CO2 enrichment effects on soil carbon and nitrogen. Agric For Meteorol 70:103–116

    Article  Google Scholar 

  • Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Forgel R, Randlett DL (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151:105–117

    Article  CAS  Google Scholar 

  • Zak DR, Pregitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2, fine roots, and the response of soil micro organisms: a review and hypothesis. New Phytol 147:201–222

    Article  CAS  Google Scholar 

  • Zanetti S, Hartwig UA, Luscher A, Hebeisen T, Frehner M, Fisher BU, Hendrey GR, Blum H, Nosberger J (1996) Stimulation of symbiotic N2 fixation in Trifolium repens L under elevated atmospheric pCO2 in a grassland ecosystem. Plant Physiol 112:575–583

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Groenigen, K.J., de Graaff, M.A., Six, J., Harris, D., Kuikman, P., van Kessel, C. (2006). The Impact of Elevated Atmospheric [CO2] on Soil C and N Dynamics: A Meta-Analysis. In: Nösberger, J., Long, S.P., Norby, R.J., Stitt, M., Hendrey, G.R., Blum, H. (eds) Managed Ecosystems and CO2 . Ecological Studies, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31237-4_21

Download citation

Publish with us

Policies and ethics