Advertisement

Carbon Partitioning and Respiration — Their Control and Role in Plants at High CO2

  • P. W. Hill
  • J. F. Farrar
  • E. L. Boddy
  • A. M. Gray
  • D. L. Jones
Part of the Ecological Studies book series (ECOLSTUD, volume 187)

Keywords

Soil Respiration Specific Leaf Area Root Respiration Plant Cell Environ Global Change Biol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372PubMedCrossRefGoogle Scholar
  2. Ainsworth EA, Davey PA, Bernacchi CJ, Dermody OC, Heaton EA, Moore DJ, Morgan PB, Naidu SL, Yoo Ra H-S, Zhu X-G, Curtis PS, Long SP (2002) A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Global Change Biol 8:695–709CrossRefGoogle Scholar
  3. Ainsworth EA, Davey PA, Hymus GJ, Osborne CP, Rogers A, Blum H, Nosberger J, Long SP (2003) Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under free air CO2 enrichment (FACE). Plant Cell Environ 26:705–714CrossRefGoogle Scholar
  4. Allen AS, Andrews JA, Finzi AC, Matamala R, Richter DD, Schlesinger WH (2000) Effects of free-air CO2 enrichment (FACE) on belowground processes in a Pinus taeda forest. Ecol Appl 10:437–448Google Scholar
  5. Amthor JS (1991) Respiration in a future higher carbon dioxide world. Plant Cell Environ 14:13–20CrossRefGoogle Scholar
  6. Brigham LA, Woo HH, Wen F, Hawes M (1998) Meristem-specific suppression of mitosis and a global switch in gene expression in the root cap of pea by endogenous signals. Plant Physiol 118:1223–1231PubMedCrossRefGoogle Scholar
  7. Bunce JA (1994) Responses of respiration to increasing atmospheric carbon dioxide concentrations. Physiol Plant 90:427–430CrossRefGoogle Scholar
  8. Bunce JA, Ziska LH (1996) Responses of respiration to increases in carbon dioxide concentration and temperature in three soybean cultivars. Ann Bot 77:507–514CrossRefGoogle Scholar
  9. Butnor JR, Johnsen KH, Oren R, Katul GG (2003) Reduction of forest floor respiration by fertilisation on both carbon dioxide-enriched and reference 17-year-old Loblolly pine stands. Global Change Biol 9:849–861CrossRefGoogle Scholar
  10. Calfapietra C, Gielen B, Galema ANJ, Lukac M, De Angelis P, Moscatelli MC, Ceulemans R, Scarascia-Mugnozza G (2003) Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation. Tree Physiol 23:805–814PubMedGoogle Scholar
  11. Campbell CD, Sage RF (2002) Interactions between atmospheric CO2 concentration and phosphorous nutrition on the formation of proteoid roots in white lupin. Plant Cell Environ 25:1051–1059CrossRefGoogle Scholar
  12. Collis BE, Plum SA, Farrar JF, Pollock CJ (1996) Root growth of barley at elevated CO2. Aspects Appl Biol 45:181–185Google Scholar
  13. Cotrufo MF, Gorissen A (1997) Elevated CO2 enhances below-ground allocation in three perennial grass species at different levels of N availability. New Phytol 137:421–431CrossRefGoogle Scholar
  14. Craine JM, Wedin DA, Reich PB (2001) Grassland species effects on soil CO2 flux track the effects of elevated CO2 and nitrogen. New Phytol 150:425–434CrossRefGoogle Scholar
  15. Daepp M, Suter D, Almeida JPF, Isopp H, Hartwig UA, Frehner M, Blum H, Nösberger J, Lüscher A (2000) Yield response of Lolium perenne swards to free air CO2 enrichment increased over six years in a high nitrogen input system on fertile soil. Global Change Biol 6:805–816CrossRefGoogle Scholar
  16. Davey PA, Hunt S, Hymus GJ, DeLucia EH, Drake BG, Karnosky DF, Long SP (2004) Respiratory oxygen uptake is not decreased by an instantaneous elevation of [CO2], but is increased with long-term growth in the field at elevated [CO2]. Plant Physiol 134:520–527PubMedCrossRefGoogle Scholar
  17. DeLucia EH, Hamilton JG, Naidu SL, Thomas RB, Andrews JA, Finzi A, Lavine M, Matamala R, Mohan JE, Hendrey GR, Schlesinger WH (1999) Net primary production of a forest ecosystem with experimental CO2 enrichment. Science 284:1177–1179PubMedCrossRefGoogle Scholar
  18. Derner JD, Polley HW, Johnson HB, Tischler CR (2001) Root system responses of C4 grass seedlings to CO2 and soil water. Plant Soil 231:97–104CrossRefGoogle Scholar
  19. Dilkes NB, Jones DL, Farrar J (2004) Temporal dynamics of carbon partitioning and rhizodeposition in wheat. Plant Physiol 134:706–715PubMedCrossRefGoogle Scholar
  20. Drake BG, Jacob J, Gonzàlez-Meler MA (1998). Photosynthesis, respiration, and global climate change. In: Rhagavendra AS (ed) Photosynthesis: a comprehensive treatise. Cambridge University Press, Cambridge pp 273–282Google Scholar
  21. Farrar JF (1996) Regulation of root weight ratio is mediated by sucrose: opinion. Plant Soil 185:13–19CrossRefGoogle Scholar
  22. Farrar JF (1999a) Carbohydrate: where does it comes from, where does it go? In: Bryant JA, Burrell MM, Kruger NJ (eds) Plant carbohydrate biochemistry. Bios, Oxford, pp 29–46.Google Scholar
  23. Farrar JF (1999b) Acquisition, partitioning and loss of carbon. In: Press MC, Scholes JD (eds) Advances in plant physiological ecology. Blackwell, Oxford, pp 25–43.Google Scholar
  24. Farrar JF, Gunn S (1996) Effects of temperature and atmospheric carbon dioxide on source-sink relations in the context of climate change. In: Zamski E, Scheffer AA (eds) Photoassimilate distribution in plants and crops. Dekker, New York, pp 389–406Google Scholar
  25. Farrar JF, Gunn S (1998) Allocation: allometry, acclimation — and alchemy? In: Lambers H, Poorter H, Van Vuuren MMI (eds) Inherent variation in plant growth. Backhuys, Leiden, pp 183–198Google Scholar
  26. Farrar JF, Jones DL (2003) The control of carbon acquisition by and growth of roots. In: Kroon H de, Visser EJW (eds) Root ecology. Springer, Berlin Heidelberg New York, pp 90–124Google Scholar
  27. Farrar J, Hawes M, Jones D, Lindow S (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837Google Scholar
  28. Fitter AH (1994) Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity. In: Caldwell MM, Pearcy RW (eds) Ecophysiological processes above-and belowground. Academic Press, New York, pp 305–323Google Scholar
  29. Gielen B, Liberloo M, Bogaert J, Calfapiertra C, De Angelis P, Miglietta F, Scarascia-Mugnozza G, Ceulemans R (2003a) Three years of free-air CO2 enrichment (POPFACE) only slightly affect profiles of light and leaf characteristics in closed canopies of Populus. Global Change Biol 9:1022–1037CrossRefGoogle Scholar
  30. Gielen B, Scarascia-Mugnozza G, Ceulemans R (2003b) Stem respiration of Populus species in the third year of free-air CO2 enrichment. Physiol Plant 117:500–507PubMedCrossRefGoogle Scholar
  31. Gonzales-Meler MA, Taneva L, Trueman RJ (2004) Plant respiration elevated atmospheric CO2 concentration: cellular responses and global significance. Ann Bot 94:647–656CrossRefGoogle Scholar
  32. Gorissen A, Cotrufo MF (2000) Decomposition of leaf and root tissue of three perennial grass species grown at two levels of atmospheric CO2 and N supply. Plant Soil 224:75–84CrossRefGoogle Scholar
  33. Gunn S, Bailey SJ, Farrar JF (1999a) Partitioning of dry mass and leaf area within plants of three grown at elevated CO2. Funct Ecol 13:3–11CrossRefGoogle Scholar
  34. Gunn S, Farrar JF, Collis BE, Nason M (1999b) Specific leaf area in barley: individual leaves versus whole plants. New Phytol 145:45–51CrossRefGoogle Scholar
  35. Hamilton JG, Thomas RB, Delucia EH (2001) Direct and indirect effects of elevated CO2 on leaf respiration in a forest ecosystem. Plant Cell Environ 24:975–982CrossRefGoogle Scholar
  36. Hansen U, Eijk J van, Bertin N, Staudt M, Kotzias D, Seufert G, Fugit J-L, Torres L, Cecinato A, Brancaleoni E, Ciccioli P, Bomboi T (1997) Biogenic emissions and CO2 exchange investigated on four Mediterranean shrubs. Atmos Environ 31:157–166CrossRefGoogle Scholar
  37. Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146CrossRefGoogle Scholar
  38. Hebeisen T, Lüscher A, Zanetti S, Fischer BU, Hartwig UA, Frehner M, Hendrey GR, Blum H, Nösberger J (1997) Growth response of Trifolium repens L. and Lolium perenne L. as monocultures and bi-species mixture to free air CO2 enrichment and management. Global Change Biol 3:149–160CrossRefGoogle Scholar
  39. Heineke D, Kauder F, Frommer W (1999) Application of transgenic plants in understanding responses to atmospheric change. Plant Cell Environ 22:623–628CrossRefGoogle Scholar
  40. Hellmann H, Barker L, Funch D, Frommer WB (2000) The regulation of assimilate allocation and transport. Aust J Plant Physiol 27:583–594Google Scholar
  41. Hill P, Marshall C, Jones DL, Farrar J (2004) Carbon sequestration: do N inputs and elevated atmospheric CO2 alter soil chemistry and respiratory C losses? Water Air Soil Pollut Focus 4:177–186CrossRefGoogle Scholar
  42. Hill P, Marshall C, Williams G, Blum H, Jones DL and Farrar JF (2006) The fate of photosynthetically-fixed carbon in Lolium perenne-Eutric Cambisol grassland as modified by elevated CO2, nitrogen and sward cutting. Global Change Biol. SubmittedGoogle Scholar
  43. Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792PubMedCrossRefGoogle Scholar
  44. Hoosbeek MR, Lukac M, Dam D van, Godbold DL, Velthorst EJ, Biondi FA, Peressotti A, Cotrufo MF, Angelis P de, Scarascia-Mugnozza G (2004) More new carbon in the mineral soil of a poplar plantation under free air carbon enrichment (POPFACE): cause of increased priming effect? Global Biogeochem Cycles 18:1040–1047CrossRefGoogle Scholar
  45. Ineson P, Coward PA, Hartwig UA (1998) Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: the Swiss free air carbon dioxide enrichment experiment. Plant Soil 198:89–95CrossRefGoogle Scholar
  46. IPCC (2001) Intergovernmental panel on climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden PJ van der, Dai X, Maskell K, Johnson CA (eds) Climate change: the scientific basis. Cambridge University Press, Cambridge, p. 192Google Scholar
  47. Jahnke S (2001) Atmospheric CO2 concentration does not directly affect leaf respiration in bean or poplar. Plant Cell Environ 24:1139–1151CrossRefGoogle Scholar
  48. Jahnke S, Krewitt M (2002) Atmospheric CO2 concentration may directly affect leaf respiration measurement in tobacco, but not respiration itself. Plant Cell Environ 25:641–651CrossRefGoogle Scholar
  49. Johnson DW, Cheng W, Joslin JD, Norby RJ, Edwards NT, Todd DE Jr (2004) Effects of elevated CO2 on nutrient cycling in a sweetgum plantation. Biogeochemistry 69:379–405CrossRefGoogle Scholar
  50. Jones DL, Darrah PR (1996) Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere. III. Spatial, kinetic and selectivity characteristics of sugar influx and the factors controlling efflux. Plant Soil 178:153–160CrossRefGoogle Scholar
  51. Jones DL, Shannon D, Murphy DV, Farrar JF (2004) Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biol Biochem 36:749–756CrossRefGoogle Scholar
  52. King JS., Hanson PJ, Bernhardt E, De Angelis P, Norby RJ, Pregitzer KS (2004) A multiyear synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Global Change Biol 10:1027–1042CrossRefGoogle Scholar
  53. Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540PubMedCrossRefGoogle Scholar
  54. Koch KE (1997) Molecular crosstalk and the regulation of C-and N-responsive genes. In: Foyer CH, Quick WP (eds) A molecular approach to primary metabolism in higher plants. Taylor and Francis, London, pp 105–124Google Scholar
  55. Körner C (1991) Some often overlooked plant characteristics as determinants of plant-growth — a reconsideration. Funct Ecol 5:162–173CrossRefGoogle Scholar
  56. Kuzyakov Y (2002) Separating microbial respiration of exudates from root respiration in non-sterile soils: a comparison of four methods. Soil Biol Biochem 34:1621–1631CrossRefGoogle Scholar
  57. Kuzyakov Y, Cheng W (2001) Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol Biochem 33:1915–1925CrossRefGoogle Scholar
  58. Lambers H (1987) Growth, respiration, exudation and symbiotic association: the fate of carbon translocated to roots. In: Gregory PJ, Lake JV, Rose DA (eds) Root development and function. Cambridge University Press, Cambridge, pp 125–146Google Scholar
  59. Li AG, Hou YS, Wall GW, Trent A, Kimball BA, Pinter PJ (2000) Free-air CO2 enrichment and drought stress effects on grain filling rate and duration in spring wheat. Crop Sci 40:1263–1270CrossRefGoogle Scholar
  60. Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628PubMedCrossRefGoogle Scholar
  61. Lukac M, Calfapietra C, Godbold DL (2003) Production, turnover and mycorrhizal colonization of root systems of three Populus species grown under elevated CO2 (POPFACE). Global Change Biol 9:838–848CrossRefGoogle Scholar
  62. Lutze JL, Gifford RM (1995) Carbon storage and productivity of a carbon dioxide enriched nitrogen limited grass sward after one year’s growth. J Biogeogr 22:227–233CrossRefGoogle Scholar
  63. Matamala M, Schlesinger WH (2000) Effects of elevated atmospheric CO2 on fine root production and activity in an intact temperate forest ecosystem. Global Change Biol 6:967–979CrossRefGoogle Scholar
  64. Norby RJ, Hanson PJ, O’Neill EG, Tschaplinski TJ, Weltzin JF, Hansen RA, Cheng W, Wullschleger SD, Gunderson CA, Edwards NT, Johnson DW (2002) Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecol Appl 12:1261–1266Google Scholar
  65. Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2 — do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162:253–280CrossRefGoogle Scholar
  66. Palviainen M, Finer L, Kurka AM, Mannerkoski H, Piirainen S, Starr M (2004) Decomposition and nutrient release from logging residues after clear-cutting of mixed boreal forest. Plant Soil 263:53–67CrossRefGoogle Scholar
  67. Pendall E, Leavitt SW, Brooks T, Kimball BA, Pinter PJ, Wall GW, LaMorte RL, Wechsung G, Wechsung F, Adamsen F, Matthias AD, Thompson TL (2001) Elevated CO2 stimulates soil respiration in a FACE wheat field. Basic Appl Ecol 2:193–201CrossRefGoogle Scholar
  68. Polley HW, Johnson HB, Tischler CR, Torbert HA (1999) Links between transpiration and plant nitrogen: variation with atmospheric CO2 concentration and nitrogen availability. Int J Plant Sci 160:535–542CrossRefGoogle Scholar
  69. Pollock C, Farrar J, Tomes D, Gallagher J, Lu CG, Koroleva O (2003) Balancing supply and demand: the spatial regulation of carbon metabolism in grass and cereal leaves. J Exp Bot 54:489–494PubMedCrossRefGoogle Scholar
  70. Poorter H, Navas M-L (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol 157:175–198CrossRefGoogle Scholar
  71. Ross DJ, Newton PCD, Tate KR (2004) Elevated [CO2] effects on herbage production and soil carbon and nitrogen pools and mineralization in a species-rich, grazed pasture on a seasonally dry sand. Plant Soil 260:183–196CrossRefGoogle Scholar
  72. Schläpfer B, Ryser P (1996) Leaf and root turnover of three ecologically contrasting grass species in relation to their performance along a productivity gradient. Oikos 75:398–406Google Scholar
  73. Sicher RC (2005) Interactive effects of inorganic phosphate nutrition and carbon dioxide enrichment on assimilate partitioning in barley roots. Physiol Plant 123:219–226CrossRefGoogle Scholar
  74. Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–82PubMedCrossRefGoogle Scholar
  75. Søe ARB, Giesemann A, Anderson T-H, Weigel H-J, Buchmann N (2004) Soil respiration under elevated CO2 and its partitioning into recently assimilated and older carbon sources. Plant Soil 262:85–94CrossRefGoogle Scholar
  76. Stitt M (1996) Metabolic regulation of photosynthesis. In: Baker NR (ed) photosynthesis and the environment. Kluwer, Dordrecht, pp 151–190Google Scholar
  77. Suter D, Frehner M, Fischer BU, Nösberger J, Lüscher A (2002) Elevated CO2 increases carbon allocation to the roots of Lolium perenne under free-air CO2 enrichment but not in a controlled environment. New Phytol 154:65–75CrossRefGoogle Scholar
  78. Sweetlove LJ, Kossmann J, Reismeier JW, Trethewey RN, Hill SA (1998) The control of source to sink carbon flux during tuber development in potato. Plant J 15:697–706CrossRefGoogle Scholar
  79. Tissue DT, Lewis JD, Wullschleger SD, Amthor JS, Griffin KL, Anderson R (2002) Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field. Tree Physiol 22:1157–1166PubMedGoogle Scholar
  80. Van der Krift TAJ, Berendse F (2002) Root life spans of four grass species from habitats differing in nutrient availability. Funct Ecol 16:198–203CrossRefGoogle Scholar
  81. Van Ginkel JH, Gorissen A, Van Veen JA (1997) Carbon and nitrogen allocation in Lolium perenne in response to elevated atmospheric CO2 with emphasis on soil carbon dynamics. Plant Soil 188:299–308CrossRefGoogle Scholar
  82. Van Ginkel JH, Gorissen A, Polci D (2000) Elevated atmospheric carbon dioxide concentration: effects of increased carbon input in a Lolium perenne soil on microorganisms and decomposition. Soil Biol Biochem 32:449–456CrossRefGoogle Scholar
  83. Van Groenigen K-J, Gorissen, A, Six J, Harris D, Kuikman PJ, Van Groenigen JW, Van Kessel C (2005) Decomposition of 14C-labelled roots in a pasture soil exposed to 10 years of elevated CO2. Soil Biol Biochem 37:497–506CrossRefGoogle Scholar
  84. Vuorinen T, Nerg A-M, Vapaavuori E, Holopainen JK (2005) Emission of volatile organic compounds from two silver birch (Betula pendula Roth) clones grown under ambient and elevated CO2 and different O3 concentrations. Atmos Environ 39:1185–1197CrossRefGoogle Scholar
  85. Wullschleger SD, Ziska LH, Bunce JA (1994) Respiratory responses pf higher plants to atmospheric CO2 enrichment. Physiol Plant 90:221–229CrossRefGoogle Scholar
  86. Xie Z, Cadisch G, Edwards G, Baggs EM, Blum H (2005) Carbon dynamics in a temperate grassland soil after 9 years exposure to elevated CO2 (Swiss FACE). Soil Biol Biochem 37:1387–1395CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • P. W. Hill
    • 1
  • J. F. Farrar
    • 1
  • E. L. Boddy
    • 1
  • A. M. Gray
    • 1
  • D. L. Jones
    • 1
  1. 1.Environmental ScienceUniversity of Wales at BangorBangor, GwyneddUK

Personalised recommendations