Skip to main content

Gynäkologie

  • Chapter
PET/CT-Atlas
  • 816 Accesses

Auszug

Auch nuklearmedizinisch gesehen haben sich die diagnostischen Möglichkeiten bei gynäkologischen Malignomen inzwischen über Skelettszintigraphie und Immunszintigraphie [6] hinaus erweitert [s. Literatur auf CD ➯ 5.1]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adler LP, Faulhaber PF, Schnur KC et al (1997) Axillary lymphnode metastases: Screening with (F-18)2-deoxy-2fluoro-D-glucose (FDG) PET. Radiology 203:323–327

    PubMed  CAS  Google Scholar 

  2. Avril N, Dose J, Jänicke F, Ziegler S et al. (1996) Assessment of axillary lymphnode involvement in breast cancer patients with positron emission tomography using radiolabeled 2-(fluorine-18)-fluoro-2-deoxyglucose. J Natl Cancer Inst 88:1204–1209

    Article  PubMed  CAS  Google Scholar 

  3. Avril N, Menzel M, Dose J et al. (2001) Glucose metabolism of breast cancer assessed by 18 F-FDG PET: Histologic and immunohistochemical tissue analysis. J Nucl Med 42:9–16

    PubMed  CAS  Google Scholar 

  4. Avril N, Schelling M, Dose J, Weber WA, Schwaiger M (1999) Utility of PET in breast cancer. Clin Positron Imag 2:261–271

    Article  Google Scholar 

  5. Bakir MA, Eccles SA, Babich JW, Aftab N, Styles JM, Dean CJ, Ott RJ (1992) c-erbB2 protein overexpression in breast cancer as a target for PET using iodine-124-labeled monoclonal antibodies. J Nucl Med 33:2154–2160

    PubMed  CAS  Google Scholar 

  6. Baum RP, Hör G (1988) Immunszintigraphie gynäkologischer Tumoren. In: Käser O, Friedberg V, Ober KG, Thomsen K, Zander J (Hrsg) Gynäkologie und Geburtshilfe. Stuttgart, S 24.48–24.55

    Google Scholar 

  7. Belhocine TC (2003) An appraisal 18F-FDG PET imaging in post-therapy surveilance of uterine cancers: clinical evidence and a research proposal. Int J Gynecol Cancer 13:228–233

    Article  PubMed  CAS  Google Scholar 

  8. Belhocine TC (2004) 18F-FDG PET imaging in posttherapy monitoring of cervical cancers From diagnosis to prognosis. J Nucl Med 45:1602–1604

    PubMed  Google Scholar 

  9. Bombardieri E, Gianni L (2004) Breast Cancer: diagnostic and therapeutic options. Eur J Nucl Med 31:S1–S186

    Article  Google Scholar 

  10. Bombardieri E, Gianni L (2004) The choice of the correct imaging modality in breast cancer management. Eur J Nucl Med Mol Imaging 31:S179–186

    Article  PubMed  Google Scholar 

  11. Bos R, van Der Hoeven JJ, van Der Wall E et al. (2002) Biological correlates of 18 F fluordeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 20:379–387

    Article  PubMed  CAS  Google Scholar 

  12. Bristow RE, delCarmen MG, Pannu HK et al. (2003) Clinically occult recurrent ovarian cancer: patient selection for secondary cytoreductive surgery usaing combinded PET/CT. Gynecol Oncol 90:519–28

    Article  PubMed  Google Scholar 

  13. Buck AK, Schirrmeister H, Mattfeld T, Reske SN (2004) Biological characterization of breast cancer by means of PET. Eur J Nucl Med Mol Imaging Suppl 1 31:S80–S87

    Article  PubMed  Google Scholar 

  14. Buscombe JR, Cwikla JB, Holloway B, Hilson AJW (2001) Prediction of the usefullness of combined mammography and scintimammography in suspected primary breast cancer using ROC curves. J Nucl Med. 42:3–8

    PubMed  CAS  Google Scholar 

  15. Buscombe JR, Miller RF, Lui D, Ell PJ (1991) Combined 67-Ga citrate and 99 Tc m-human immunodeficiency virus-positive patients with fever of undetermined origin. Nucl Med Comm 12:583–592

    Article  CAS  Google Scholar 

  16. Cho SM, Ha HK, Byun HK (2002) Usefulness of FDG PET for assessment of early recurrent epithelial ovarian cancer. Am J Roentgenol 179:391–395

    Google Scholar 

  17. Cohade Ch, Osman M, Pannu HK, Wahl RL (2003) Uptake in supraclavicular area fat (“USA-FAT”): Description on 18 F-FDG PET/CT. J Nucl Med 44:170–176

    PubMed  CAS  Google Scholar 

  18. Coleman RE, Mashiter G, Whitaker KB, Rubens RD, Fegelman I (1988) Bone scan flare predicts successful systemic therapy for bone metastases. J Nucl Med 29:1354–1359

    PubMed  CAS  Google Scholar 

  19. Cook GJ, Houston S, Rubens R et al. (1998) Detection of bone metastases in breast cancer by FDG PET:differing metabolic activity in osteoblatic and osteolytic lesions. J Clin Oncol 16:3375–3379

    PubMed  CAS  Google Scholar 

  20. Cordobes MD, Starzee A, Delmon-Moingeon L et al. (1996) Technetium-99 m-Sestamibi uptake by human benign and malignant breast tumor cells: Correlation with MDR gene expression. J Nucl Med 37:286–289

    PubMed  CAS  Google Scholar 

  21. Costa SD, Bastert G (1992) Die Bedeutung des HER-2/neu-Onkogens in der Diagnostik des Mammakarzinoms. Dt Ärztebl 35:843–849

    Google Scholar 

  22. Crippa F, Agresti R, Seregni E et al. (1998) Prospective evaluation of fluorine-18-FDG PET in presurgical staging of the axilla in breast cancer. J Nucl Med 39:4–8

    PubMed  CAS  Google Scholar 

  23. Crippa F, Gerali A et al. (2004) FDG-PET for axillary lymph node staging in primary breast cancer. Eur J Nucl Med Mol Imaging 31:S97–S102

    Article  PubMed  Google Scholar 

  24. Czernin J (2002) FDG-PET in breast cancer: Different view of its clinical usefulness. Molecular Imaging and Biology 4:35–45

    Article  PubMed  Google Scholar 

  25. Daidone MG, Paradiso A, Gion M et al. (2004) Biomolecular features of clinical relevance in breast cancer. Eur J Nucl Med Mol Imaging (Suppl 1) 31:Sr–S14

    Google Scholar 

  26. Dehdashti F, McGuire AH, van Brocklin HF et al. (1991) Assessment of 2 l-(18)-fluoro-16 alpha-ethyl-19-norprogesteron as a positron-emitting radiopharmaceutical for the detection of progestin receptors in human breast carcinomas. J Nucl Med 32:1532–1537

    PubMed  CAS  Google Scholar 

  27. DiMaggio C (2004) State of the art of current modalities for the diagnosis of breast lesions. Eur J Nucl Med Mol Imag 31:S56–S69

    Article  Google Scholar 

  28. Dose Schwarz J, Bader M, Jenicke L et al. (2005) Early prediction of response to chemotherapy in metastatic brest cancer using sequential 18F-FDG PET. J Nucl Med 46:1144–50

    PubMed  Google Scholar 

  29. Eubank WB, Mankoff DA, Takasugi J et al. (2001) 18 Fluorodeoxyglucose positron emission tomography to detect mediastinal or internal mammary metastases in breast cancer. J Clin Oncol 19:3516–23

    PubMed  CAS  Google Scholar 

  30. Even-Sapir E (2005) Imaging of malignant bone involvement by morphological, scintigraphic and hybrid modalities. J Nucl Med 46:1356–67

    PubMed  Google Scholar 

  31. Flanagan FL et al. (1998) PET in breast cancer. Semin Nucl Med 28:290–302

    Article  PubMed  CAS  Google Scholar 

  32. Giersiepen K, Hartje U, Hentschel St et al. (2004) Brustkrebsregistrierung in Deutschland-Tumorstadienverteilung in der Zielgruppe für das Mammographie-Screening. Dtsch Ärztbl 101:2117–22

    Google Scholar 

  33. Gigerenzer G (2004) Das Einmaleins der Skepsis. Berliner Taschenbuchverlag (BTV), S 1437–1498

    Google Scholar 

  34. Gillespie PJ, Alexander JL, Edelstyn GA (1973) High concentration of 99 m Tc-sulfur colloid found during routine liver scan in lungs of patients with advanced breast carcinoma. J Nucl Med 14:711–712

    PubMed  CAS  Google Scholar 

  35. Gödde E (1999) Klinische Bedeutung der Identifizierung und Charakterisierung von zirkulierenden Tumorzellen. Med Klin Suppl 3:25–8

    Google Scholar 

  36. Gralek D, Montravers F, Kerrou K et al. (2004) (18 F) FDG in recurrent breast cancer: diagnostic performances, clinical impact and relevance of induced changes in management. Eur J Nucl Med Mol Imaging 31:179–188

    Article  Google Scholar 

  37. Hayes JC (2004) MR spectroscopy adds specificity to breast MR. www. diagnosticimaging.com June/July:14

    Google Scholar 

  38. Heindel W (1993) MR-Spektroskopie, Der Freie Radiologe 7:48

    Google Scholar 

  39. Hoegerle S, Juengling F, Otte A et al. (1998) Combined FDG and F-18-fluoride whole body PET: a feasible two-in-one-approach to cancer imaging. Radiology 209:253–258

    PubMed  CAS  Google Scholar 

  40. Hoh CK, Glapsy JA, Choi Y et al. (1992) Quantitative dynamic and whole body PET FDG imaging of breast cancer. J Nucl Med 33:828

    Google Scholar 

  41. Hubner KF, McDonald TW, Niethammer JG et al. (1993) Assessment of primary and metastastic ovarian cancer by positron emission tomography using 18 F-deoxyglucose. Gynecol Oncol 51:197–204

    Article  PubMed  CAS  Google Scholar 

  42. Humphrey LL, Helfant M, Chan BKS, Woolf StH (2002) Breast cancer screening: A summary of the evidence for the U.S. preventive services task force. Ann Intern Med 137:347–360

    PubMed  Google Scholar 

  43. Ide M, Suzuki Y, Weckesser M, Schober O (2005) Is whole-body FGD-PET valuable for health screening? (For/against-Controversies). Eur J Nucl Med Mol Imaging 32:339–431

    Article  PubMed  Google Scholar 

  44. Janni W, Pantel K, Racke B et al. (2004) Isolierte disseminierte Tumorzellen im Knochenmark von Brustkrebspatientinnen (Methodik, Biologie und klinische Relevanz). Dtsch Arztebl 101:3496–3502

    Google Scholar 

  45. Jansson T, Westlin JE, Ahlström H et al. (1995) Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: A method for early therapy evaluation?. J Clin Oncol 13:1470–1477

    PubMed  CAS  Google Scholar 

  46. Jemal et al. (2005) Cancer Statisticcs 2005, CA Cancer Clin 55:10–30

    Google Scholar 

  47. Kaufmann M, Jonat W (1998) Therapie des primären Mammakarzinoms (St. Gallen Vorschläge). Dt Ärztebl 95

    Google Scholar 

  48. Kaur H, Iyer PM, Silverman RP et al. (2003) Diagnosis, staging and surveillance of cervical carcinoma. Am J Roentegnol 180:1621–1632

    Google Scholar 

  49. Khalkhali I, Diggles LE, Taillefer R, Vandestreck PR et al. (1999) Procedure guidelines for breast scintigraphy. J Nucl Med 40:1233–1235

    PubMed  CAS  Google Scholar 

  50. Kilbourn MR, Zalutsky MR (1985) Research and clinical potential of receptor based radio-pharmaceuticals. J Nucl Med 26:655–662

    PubMed  CAS  Google Scholar 

  51. Kim EE, Kim BT, Haynie TP, Podoloff DA, Wong WH, Yang DJ, Tilbury RS, Hortobagyi G (1992) Evaluation of preoperative chemotherapy in patients with locoregionally advanced breast cancer using 18 F-FDG PET. J Nucl Med 33:828

    Google Scholar 

  52. Kim S, Chung J, Kang S et al. (2004) (18F) FDG as a substitute for second-look laparatomy in patients with advanced ovarian carcinoma. Eur J Nucl Med Mol Imaging 31:196–201

    Article  PubMed  Google Scholar 

  53. Krak NC, Hoekstra OS, Lammertsma AA (2004) Measuring response to chemotherapy in locally advanced breast cancer:methodological considerations. Eur J Nucl Med Mol Imaging (Suppl 1) 31:S103–S111

    Article  PubMed  Google Scholar 

  54. Kubik-Huch RA, Dorffler W, von Schulthess GK et al. (2000) Value of 18-FDG positron emission tomography, computed tomography and magnetic resonance imaging in diagnosing primary and recurrent ovarian cancer. Eur Radiol 10:761–7

    Article  PubMed  CAS  Google Scholar 

  55. Kürzl R (2004) Evidenzbasierte Missverständnisse beim Mammakarzinom. Dt Ärztebl 101:C1935–38

    Google Scholar 

  56. Lapela M, Leskinen-Kallio S, Varpula M et al. (1995) Metabolic imaging of ovarian tumors with carbon-11-methionine: A PET study. J Nucl Med 36:2196–2200

    PubMed  CAS  Google Scholar 

  57. Lerman H, Metser U, Grisaru D et al. (2004) Normal and abnormal 18 F-FDG endometrial and ovarian uptake in pre-and postmenopausal patients: Assessment by PET/CT. J Nucl Med 45:266–271

    PubMed  Google Scholar 

  58. Levchenko A, Mehta BM, Lee JB et al. (2000) Evaluation of 11 C-colchicine for PET imaging of multiple drug resistance. J Nucl Med 41:493–501

    PubMed  CAS  Google Scholar 

  59. Lind P, Igerc I, Beyer Th et al. (2004) Advantages and limitations of FDG PET in the follow-up of breast cancer. Eur J Nucl Med Mol Imaging (Suppl 1) 31:S125–S134

    Article  PubMed  Google Scholar 

  60. Maffioli L, Florimonte L, Pagini L et al. (2004) Current role of bone scan with phophonates in the follow-up of breast cancer. Eur J Nucl Med Mol Imaging 31:S143–S148

    Article  PubMed  Google Scholar 

  61. Makhija S, Howden N, Edwards R et al. (2002) Positron emission tomography/computed tomography imaging for the detection of recurrent ovarian and Fallopian tube carcinoma:A retrospective review. Gynecol Oncol 85:53–58

    Article  PubMed  CAS  Google Scholar 

  62. Mann A (1999) Womens’ health issues and nuclear medicine, part II: Women and breast. J Nucl Med Technol 27:184–187

    PubMed  CAS  Google Scholar 

  63. Mansi JJ (1987) Micrometastases in bone marrow in patients with primary breast cancer: evaluation as an early predictor of bone metastases. Br J Med 295:1093–1096

    CAS  Google Scholar 

  64. Mehta TS (2003) Current uses of ultrasound in the evaluation of breast. Radiol Clin North Am 41:841–850

    Article  PubMed  Google Scholar 

  65. Merkel H (1906) Über ein Pseudolipom der Brust. Beitr Path Anat 39:152–157

    Google Scholar 

  66. Mintun MA, Welch MJ, Siegel BA, Mathias CJ, Brodack JW, McGuire AH, Katzenellenbogen JA (1988) Breast cancer: PET imaging of estrogen receptors. Radiology 169:45–48

    PubMed  CAS  Google Scholar 

  67. Mohnike W (2004) Erste Erfahrungen mit PET/CT im niedergelassenen Bereich, Klinische Highlights, ökonomische Daten. Diagn Therapeut Zentrum, Berlin und BDN:22

    Google Scholar 

  68. Munz DL (2001) The sentinel lymph node concept in oncology. Zuckerschwerdt, München

    Google Scholar 

  69. Munz DL, Hör G (1981) Die Bedeutung der funktionellen Knochenmarksszintigraphie in der Tumordiagnostik. Deutsche Gesellschaft für Innere Medizin, München, S 1105–1112

    Google Scholar 

  70. Munz DL, Maza S, Ivancevic V, Geworski L (2000) Classification of the lymphatic drainage status of a primary tumor:a proposal. Nuklearmedizin 39:88–91

    PubMed  CAS  Google Scholar 

  71. Nakamoto Y, Tatsumi M, Cohade C et al. (2003) Accuracy of image fusion of normal upper abdominal organs visualized with PET/CT. Eur J Nucl Med Mol Imaging 30:597–602

    Article  PubMed  Google Scholar 

  72. Narayan K, Hicks RJ, Jobling T et al. (2001) A comparison of MRI and PET scanning in surgically staged locoregionally advanced cervical cancer:potential impact on treatment. J Gynecol Cancer 11:263–271

    Article  CAS  Google Scholar 

  73. National Cancer Policy Board (NCPB), Institute of Medicine (IOM), Board on Science, Technology and Economic Policy (STEP) (2004) Saving women’s lives: strategies for improving breast cancer detection and diagnosis. The National Academics Press, Washington DC, pp 349

    Google Scholar 

  74. Nyström L, Rutqvist LE, Wall S et al. (1993) Breast cancer screening with mammography. Overview of Swedisch randomised trials. Lancet 341:973–978

    Article  PubMed  Google Scholar 

  75. Osman MM, Cohade Ch, Nakamoto Y et al. (2003) Clinically significant inaccurate localization of lesions with PET/CT: Frequency in 300 patients. J Nucl Med 44:240–243

    PubMed  Google Scholar 

  76. Paans AMJ, Vaalburg W, Woldring MG (1985) A comparison of the sensitivity of PET and NMR for in vivo quantitative metabolic imaging. Eur J Nucl Med 11:73–75

    Article  PubMed  CAS  Google Scholar 

  77. Reske S, Kotzerke J (2001) FDG-PET for clinical use (Results of the 3rd German Interdisciplinary Consensus Conference, “Onko-PET III”, 21 July and 19 September 2000). Eur J Nucl Med 28:1707–1723

    Article  PubMed  CAS  Google Scholar 

  78. Ryu SY, Kim MH, Choi SC et al. (2003) Detection of early recurrence with 18F FDG PET in patients with cervical cancer. J Nucl Med 44:347–352

    PubMed  Google Scholar 

  79. Sackett DL, Straus SE, Richardson WS, Rosenberg W, Haynes RB (2000) Evidence-based medicine: how to practice and teach EBM. Churchill Livingstone, London

    Google Scholar 

  80. Scheidhauer K, Scharl A, Schicha H (1998) Estrogen receptor scintigraphy. Q J Nucl Med. 42:2326

    Google Scholar 

  81. Schillaci O, Buscombe JR (2004) Breast scintigraphy today:indications and limitations. Eur J Nucl Med Mol Imaging (Suppl 1) 31:S35–S45

    Article  PubMed  Google Scholar 

  82. Schirrmeister H, Guhlmann A, Kotzerke J et al. (1999) Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol 17:2381–2391

    PubMed  CAS  Google Scholar 

  83. Schroder W, Zimny M, Rudlowski C et al. (1999) The role of fluoro-deoxyglucose positron emission tomography (18F FDG PET) in diagnosis of ovarian cancer. Int J Gynocol Cancer 9:117–122

    Article  Google Scholar 

  84. Seregni E, Coli A, Mattzcca N (2004) Circulating tumour markers in breast cancer. Eur J Nucl Med Mol Imag (Suppl 1) 31:S15–S22

    Article  Google Scholar 

  85. Shreve PD, Anzai Y, Wahl RL (1999) Pitfalls in oncological diagnosis with FDG-PET imaging:physiolgic and benign variants. Radiographics 19:61–77

    PubMed  CAS  Google Scholar 

  86. Siggelkow W, Rath W, Büll U, Zimny M (2004) FDG PET and tumor markers in the diagnosis of recurrent and metastatic breast cancer. Eur J Nucl Med Mol Imaging 31:S118–S124

    Article  PubMed  Google Scholar 

  87. Silverman DHS (2005) Screening 18F-FDG whole-body scanning:AWESOM-PET or FALSEPOS-PET. J Nucl Med 46:717

    Google Scholar 

  88. Suzuki A, Kawano T, Takahashi N et al. (2004) Value of 18F-FDG in the detection of peritoneal carcinomatosis. Eur J Nucl Med 31:1413–1420

    Google Scholar 

  89. Tabar L, Yen MF, Vitak B et al. (2003) Mammography service screening and mortality in breast cancer patients: 20 years follow-up before and after introduction of screening. Lancet 361:1405–10

    Article  PubMed  Google Scholar 

  90. Tanis PJ, van Sandick JW, Nieweck OE et al. (2002) The hidden sentinel node in breast cancer. Eur J Nucl Med 29:305–311

    Article  CAS  Google Scholar 

  91. Tiling R, Stephan K, Sommer H et al. (2004) Tissue-specific effects on uptake of 99 m Tc-sestamibi by breast lesions:A targeted analysis of false scintigraphic diagnoses. J Nucl Med 45:1822–28

    PubMed  Google Scholar 

  92. Tran A, Pio BS, Khatibi B et al. (2005) 18F-FDG PET for staging breast cancer in patients with inner-quadrant versus outer quadrant tumors: Comparison with longterm clinical outcome. J Nucl Med 46:1455–1459

    PubMed  Google Scholar 

  93. Tran BN, Grigsby PW, Dehdashti F et al. (2003) Occult supraclavicular lymph node metastasis identified by FDG PET in patients with carcinoma of the uterine cervix. Gynecol Oncol 90:572–576

    Article  PubMed  Google Scholar 

  94. Tsai Ch, Tsai ChS, Ng K et al. (2003) The impact of image fusion in resolving discrepant findings between FDG-PET and MRI/CT in patients with gynecological cancers. Eur J Nucl Med 30:1674–1683

    Article  Google Scholar 

  95. Turlakow A, Yeung HW, Salmon AS et al. (2003) Peritoneal carcinomatosis:role of 18F-FDG PET. J Nucl Med 44:1407–1412

    PubMed  Google Scholar 

  96. Utech CI, Young CS, Winter PF (1996) Prospective evaluation of fluorine-18 flurododeoxyglucose positron emission tomography in breast cancer for staging of the axilla related to surgery and immunocytochemistry. Eur J Nucl Med 23:1588–1593

    Article  PubMed  CAS  Google Scholar 

  97. van Rijk MC, Tanis PJ, Valdes Olmos RA (2004) Sentinel nodes outside the axilla and internal mammary chain in patients with breast carcinoma (Abstr 398). Eur J Nucl Med Mol Imaging (Suppl 2) 31:S295–6

    Article  Google Scholar 

  98. Veronesi U, Paganelli G, Galimberti V et al. (1997) Sentinel node biopsy to avoid axillary dissection in breast cancer with clinically negative lymph nodes. Lancet 349:1864–1887

    Article  PubMed  CAS  Google Scholar 

  99. Vogl Th (1995) MR-Angiographie und MR-Tomographie des Gefäßsystems (Klinische Diagnostik). Springer, Berlin Heidelberg New York Tokio

    Google Scholar 

  100. Wahl RL (1998) Overview of the current status of PET in breast cancer imaging. Q J Nucl Med 42:1–7

    PubMed  CAS  Google Scholar 

  101. Wahl RL, Helvie MA, Chang AE, Andersson I (1994) Detection of breast cancer in women after augmentation mammoplasty using flourine-18-fluorodeoxyglucose-PET. J Nucl Med 35:872–875

    PubMed  CAS  Google Scholar 

  102. Wahl RL, Hutchins GD, Cody RL, Mudgett EE (1991) Primary and metastatic breast carcinoma: initial clinical evaluation with PET with the radiolabeled glucose analogue 2-(F-18)-fluoro-2-deoxy-D-glucose. Radiology 179:765–770

    PubMed  CAS  Google Scholar 

  103. Yang D, Wong WH, Tansey W, Vargas K, Brown JA, Tilbury R, Broussard W, Kuang LR, Wallace S, Kim EE (1992) 18 F Fluoro analog of Tamoxifen: radiosynthesis and imaging of estrogen receptors with PET. J Nucl Med 33:985

    Google Scholar 

  104. Yeh LS, Hung YC, Shen YY et al. (2002) Detecting paraaortic lymh node metastasis by positron emission tomography of 18F fluorodeoxyglucose in advanced cervical cancer with negative magnetic resonance imaging findings. Oncol Rep 9:1289–1292

    PubMed  Google Scholar 

  105. Yen RF, Sun SS, Changlai SP, Kao A (2001) Whole-body emission tomography with 18F fluoro-2-deoxyglucose for the detection of recurrent ovarian cancer. Anticancer Res 21:3691–3694

    PubMed  CAS  Google Scholar 

  106. Yen T, See L, Chang T et al. (2004) Defining the priority of using 18 F-FDG PET for recurrent cervival cancer. J Nucl Med 45:1632–1639

    PubMed  Google Scholar 

  107. Yen TC, See LC, Lai Ch et al. (2004) 18F-FDG uptake in squamous cell carcinoma of the cervix is correlated with glucose transporter 1 expression. J Nucl Med 45:22–29

    PubMed  CAS  Google Scholar 

  108. Yoshimura G, Sakurai T, Oura S et al. (1999) Evaluation of axillary lymph node status in breast cancer with MRI. Breast Cancer 6:249–258

    Article  PubMed  Google Scholar 

  109. Zangheri B, Messa Ch, Picchio M et al. (2004) PET/CT and breast cancer. Eur J Nucl Med Mol Imaging (Suppl 1) 31:135–142

    Article  Google Scholar 

  110. Zimny M, Schröder W, Wolters S, Cremerius U, Rath W, Büll U (1997) 18F-Fluordeoxyglukose PET beim Ovarialkarzinom: Methodik und erste Ergebnisse. Nuklearmedizin 36:228–233

    PubMed  CAS  Google Scholar 

  111. Zimny M, Siggelkow W (2003) Positron emission tomography scanning in gynecological and breast cancers. Curr Opin Obstet Gynecol 15:69–75

    Article  PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Gynäkologie. In: PET/CT-Atlas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31215-3_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-31215-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31214-7

  • Online ISBN: 978-3-540-31215-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics