Skip to main content

Concentration Inequalities for Euler Schemes

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2004

Summary

We establish a Poincaré inequality for the law at time t of the explicit Euler scheme for a stochastic differential equation. When the diffusion coefficient is constant, we also establish a Logarithmic Sobolev inequality for both the explicit and implicit Euler scheme, with a constant related to the convexity of the drift coefficient. Then we provide exact confidence intervals for the convergence of Monte Carlo methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. AnĂ©, S. Blachère, D. ChafaĂ¯, P. Fougères, I. Gentil, F. Malrieu, C. Roberto, and G. Scheffer. Sur les inĂ©galitĂ©s de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses. SociĂ©tĂ© MathĂ©matique de France, Paris, 2000.

    Google Scholar 

  2. F. Antonelli and A. Kohatsu-Higa. Rate of convergence of a particle method to the solution of the McKean-Vlasov equation. Ann. Appl. Probab., 12:423–476, 2002.

    Article  MathSciNet  Google Scholar 

  3. D. Bakry. On Sobolev and logarithmic Sobolev inequalities for Markov semigroups. In New trends in stochastic analysis (Charingworth, 1994), pp. 43–75, River Edge, NJ, 1997. Taniguchi symposium, World Sci. Publishing.

    Google Scholar 

  4. D. Benedetto, E. Caglioti, and M. Pulvirenti. A kinetic equation for granular media. RAIRO Modérl. Math. Anal. Numér., 31(5):615–641, 1997.

    MathSciNet  Google Scholar 

  5. M. Bossy. Optimal rate of convergence of a stochastic particle method to solutions of 1D viscous scalar conservation laws. Math. Comp., 73(246):777–812, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Bossy and D. Talay. Convergence rate for the approximation of the limit law of weakly interacting particles: application to the Burgers equation. Ann. Appl. Probab., 6(3):818–861, 1996.

    Google Scholar 

  7. M. Bossy and D. Talay. A stochastic particle method for the McKean-Vlasov and the Burgers equation. Math. Comp., 66(217):157–192, 1997.

    Article  MathSciNet  Google Scholar 

  8. J. Carrillo, R. McCann, and C. Villani. Kinetic equilibration rates for granular media. Rev. Matematica Iberoamericana, 19:1–48, 2003.

    MathSciNet  Google Scholar 

  9. M. Ledoux. Concentration of measure and logarithmic Sobolev inequalities. In Séminaire de Probabilités XXXIII. Lectures Notes in Math., vol 1709, pp. 120–216. Springer, Berlin, 1999.

    Google Scholar 

  10. F. Malrieu and D. Talay. Poincaré inequalities for Euler schemes. In preparation.

    Google Scholar 

  11. F. Malrieu. Logarithmic Sobolev inequalities for nonlinear PDE’s. Stochastic Process. Appl., 95(1):109–132, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  12. F. Malrieu, Convergence to equilibrium for granular media equations and their Euler schemes. Ann. Appl. Probab., 13(2): 540–560, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  13. H. P. McKean, Jr. Propagation of chaos for a class of non-linear parabolic equations. In Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967), pp. 41–57. Air Force Office Sci. Res., Arlington, Va., 1967.

    Google Scholar 

  14. S. Méléard. Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models. In Probabilistic models for nonlinear partial differential equations (Montecatini Terme, 1995), D. Talay and L. Tubaro (Eds.), pp. 42–95. Springer, Berlin, 1996.

    Google Scholar 

  15. D. Talay. Probabilistic numerical methods for partial differential equations: elements of analysis. In Probabilistic models for nonlinear partial differential equations (Montecatini Terme, 1995), D. Talay and L. Tubaro (Eds.), pp. 148–196. Springer, Berlin, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Malrieu, F., Talay, D. (2006). Concentration Inequalities for Euler Schemes. In: Niederreiter, H., Talay, D. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31186-6_21

Download citation

Publish with us

Policies and ethics