Skip to main content

On the Modeling of Growth and Adaptation

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alber, M. S., Kiskowski, M. A., Glazier, J. A., and Jiang, Y. (2002). On cellular automaton approaches to modeling biological cells. In Rosenthal, J., and Gilliam, D. S., eds., Mathematical Systems Theory in Biology, Communication, and Finance. New York: Springer-Verlag. IMA Volume 142.

    Google Scholar 

  • Beysens, D. A., Forgacs, G., and Glazier, J. A. (2000). Cell sorting is analogous to phase ordering in fluids. Proc. Nat. Acad. Sci. USA 97:137–145.

    Article  Google Scholar 

  • Bookstein, F. L. (1978). The Measurement of Biological Shape and Shape Change, volume 24 of Lecture Notes in Biomathematics. New York: Springer.

    Google Scholar 

  • Boyce, M. C. (2003). Private communication.

    Google Scholar 

  • Casay, J., and Naghdi, P. M. (1981). A remark on the use of the decomposition F = F e F p in plasticity. J. Appl. Mech. 47:672–675.

    Article  Google Scholar 

  • Chen, Y. C., and Hoger, A. (2000). Constitutive function of elastic materials in finite growth and deformation. J. Elasticity 59:175–193.

    Article  MATH  Google Scholar 

  • Choung, C. J., and Fung, Y. C. (1986). Residual stress in arteries. In Schmid-Schoenbein, G. W., Woo, S. L., and Zweifach, B. W., eds., Frontiers in Biomechanics. 117–129.

    Google Scholar 

  • Cowin, S. C., and Hegedus, D. H. (1976). Bone remodelling I: Theory of adaptive elasticity. J. Elasticity 6:313–326.

    MathSciNet  MATH  Google Scholar 

  • Cowin, S. C., and Moss, M. L. (2000). Mechanosensory mechanisms in bone. In Lanza, R., Langer, R., and Chick, W., eds., Textbook of Tissue Engineering. San Diego: Academic Press, 2nd edition. 723–738.

    Google Scholar 

  • Cowin, S. C., and Nachlinger, R. R. (1978). Bone remodelling III: Uniqueness and stability in adaptive elasticity theory. J. Elasticity 8:285–295.

    Article  MathSciNet  MATH  Google Scholar 

  • Cowin, S. C., Moss-Salentijn, L., and Moss, M. L. (1991). Candidates for the mechanosensory system in bone. J. Biomech. Eng. 113:191–197.

    Google Scholar 

  • Cowin, S. C., Weinbaum, S., and Zeng, Y. (1995). A case for bone canaliculi as the anatomical site of strain generated potentials. J. Biomech. 28:1281–1297.

    Article  Google Scholar 

  • Cowin, S. C. (1984). Modeling of the stress adaptation process in bone. Calcif. Tissue Int. 36:S99–104.

    Google Scholar 

  • Cowin, S. C. (1996). Strain or deformation rate dependent finite growth in soft tissues. J. Biomech. 29:647–649.

    Article  Google Scholar 

  • Cowin, S. C. (1999). Bone poroelasticity. survey article. J. Biomech. 32:217–238.

    Article  Google Scholar 

  • Cowin, S. C. (2002). Mechanosensation and fluid transport in living bone. J. Musculoskelet. Neuronal. Interact. 2:256–260.

    Google Scholar 

  • Cowin, S. C. (2003). Adaptive elasticity: A review and critique of a bone tissue adaptation model. Engng Trans. 51:1–79.

    Google Scholar 

  • Cowin, S. C. (2004). Tissue growth and remodeling. Ann. Rev. Biomed. Eng. 6:77–107.

    Article  Google Scholar 

  • D’Arcy Thompson, W. (1942). On Growth and Form. Cambridge: Cambridge Univ. Press.

    MATH  Google Scholar 

  • Epstein, E., and Maugin, G. A. (2000). Thermomechanics of volumetric growth in uniform bodies. Int. J. Plasticity 16:951–978.

    Article  MATH  Google Scholar 

  • Fung, Y. C., and Liu, S. Q. (1989). Relationship between hypertension, hypertrophy, and opening angle of zero-stress state of arteries following aortic constriction. J. Biomech. Eng. 111:325–335.

    Google Scholar 

  • Fung, Y. C. (1990). Biomechanics: Motion, Flow, Stress, and Growth. Springer-Verlag.

    Google Scholar 

  • Guyton, A. C. (1976). Medical Physiology. Philadelphia: W. B. Saunders.

    Google Scholar 

  • Han, H. C., and Fung, Y. C. (1991). Residual strains in porcine and canine tracheas. J. Biomech. 24:307–315.

    Article  Google Scholar 

  • Hart, R. L. (2001). Bone modeling and remodeling: Theories and computation. In Cowin, S. C., ed., Bone Mechanics Handbook. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Heegaard, J. H., Beaupre, G. S., and Carter, D. R. (1999). Mechanically modulated cartilage growth may regulate joint surface morphogenesis. J. Orthop. Res. 17:509–517.

    Article  Google Scholar 

  • Heegaard, J. H. (1999). Dynamics of joint morphogenesis. In Petersen, P., and Bendsøe, M. P., eds., IUTAM Symposium on Synthesis in Bio-Solid Mechanics. Dordrecht: Kluwer.

    Google Scholar 

  • Hegedus, D. M., and Cowin, S. C. (1976). Bone remodeling, II: Small strain adaptive elasticity. J. Elasticity 6:337–352.

    MathSciNet  MATH  Google Scholar 

  • Hoger, A. (1997). Virtual configurations and constitutive equations for residually stressed bodies with material symmetry. J. Elasticity 48:125–144.

    Article  MATH  MathSciNet  Google Scholar 

  • Humphrey, J. D. (2001). Stress, strain and mechanotransduction in cells. J. Biomech. Eng. 123:638–641.

    Article  Google Scholar 

  • Johnson, B. E., and Hoger, A. (1998). The use of strain energy to quantify the effect of residual stress on mechanical behavior. Math. Mech. Solids 4:447–470.

    Google Scholar 

  • Kamiya, A., Bukhari, R., and Togawa, T. (1984). Adaptive regulation of wall shear stress optimizing vascular tree function. Bull. Math. Biol. 46:127–173.

    Article  Google Scholar 

  • Kröner, E. (1960). Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal. 4:273–334.

    Article  MATH  Google Scholar 

  • Lanyon, L. E., and Rubin, C. T. (1984). Static vs dynamic loads as an influence on bone remodelling. J. Biomech. 17:897–905.

    Article  Google Scholar 

  • Lee, E. H. (1969). Elastic-plastic deformation at finite strains. J. Appl. Mech. 36:1–8.

    MATH  Google Scholar 

  • Lin, I. E., and Taber, L. A. (1995). A model for stress-induced growth in the developing heart. J. Biomech. Eng. 117:343–349.

    Google Scholar 

  • Liu, S. Q., and Fung, Y. C. (1988). Zero-stress states of arteries. J. Biomech. Eng. 110:82–84.

    Article  Google Scholar 

  • Liu, S. Q., and Fung, Y. C. (1989). Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circ. Res. 65:1340–1349.

    Google Scholar 

  • Lubarda, V. A., and Hoger, A. (2002). On the mechanics of solids with a growing mass. Int. J. Solids Structures 39:4627–4664.

    Article  MATH  Google Scholar 

  • Luo, G. M., Cowin, S. C., Sadegh, A. M., and Arramon, Y. (1995). Implementation of strain rate as a bone remodeling stimulus. J. Biomech. Eng. 117:329–338.

    Google Scholar 

  • Mombach, J., Glazier, J. A., Raphael, R., and Zajac, M. (1995). Quantitative comparison between differential adhesion models and cell sorting in the presence and absence of fluctuations. Phys. Rev. Lett. 75:2244–2247.

    Article  Google Scholar 

  • O’Connor, J. A., Lanyon, L. E., and MacFie, H. (1982). The influence of strain rate on adaptive bone remodeling. J. Biomech. 15:767–781.

    Article  Google Scholar 

  • Omens, J. H., and Fung, Y. C. (1990). Residual strain in rat left ventricle. Circ. Res. 66:37–45.

    Google Scholar 

  • Omens, J. H. (1998). Stress and strain as regulators of myocardial growth. Prog. Biophys. Molec. Biol. 69:559–572.

    Article  Google Scholar 

  • Ramsey, A., Foty, C., Pfleger, M., Forgacs, G., and Steinberg, M. S. (1996). Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development 122:1611–1620.

    Google Scholar 

  • Rodriguez, E. K., Omens, J. H., Waldman, L. K., and McCulloch, A. D. (1993). Effect of residual stress on transmural sarcomere length distribution in rat left ventricle. Am. J. Physiol. 264:H1048–H1056.

    Google Scholar 

  • Rodriguez, E. K., Hoger, A., and McCulloch, A. D. (1994). Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27:455–468.

    Article  Google Scholar 

  • Rodríguez, J. S., Goicolea, J., García, J. C., and Gabaldón, F. (2003). Finite element models for mechanical simulation of coronary arteries. Preprint from E.T.S.I. Caminos, Canales y Puertos, Depto. Mecanica de Medios Continuos, Universidad Politécnica de Madrid (UPM). Madrid, 28040, Spain.

    Google Scholar 

  • Rodríguez, J. S. (2003). Modelos numéricos para mecanica cardiovascular de las paredes arteriales y sus procesos de adaptacíon. Ph.D. Dissertation, Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos.

    Google Scholar 

  • Rubin, C. T., and Lanyon, L. E. (1984). Regulation of bone formation by applied dynamic loads. J. Bone Joint Surg. 66A:397–402.

    Google Scholar 

  • Skalak, R., Dasgupta, G., Moss, M., Otten, E., Dullemeijer, P., and Vilmann, H. (1982). Analytical description of growth. J. Theor. Biol. 94:555–577.

    Article  MathSciNet  Google Scholar 

  • Skalak, R., Zargaryan, S., Jain, R. K., Netti, P. A., and Hoger, A. (1996). Compatibility and the genesis of residual stress by volumetric growth. J. Math. Biol. 34:889–914.

    MATH  Google Scholar 

  • Skalak, R., Farrow, D. A., and Hoger, A. (1997). Kinematics of surface growth. J. Math. Biol. 35:869–907.

    Article  MathSciNet  MATH  Google Scholar 

  • Skalak, R. (1981). Growth as a finite displacement field. In Carlson, D. E., and Shield, R. T., eds., Proceedings of the IUTAM Symposium on Finite Elasticity, 1981. The Hague: Martinus Nijhoff Publishers.

    Google Scholar 

  • Smit, T. H., Huyghe, J. M., and Cowin, S. C. (2002). Estimation of the linear isotropic parameters. J. Biomech. 35:829–835.

    Article  Google Scholar 

  • Steinberg, M. (1962). Mechanism of tissue reconstruction by dissociated cells, II time-course of events. Science 137:762–763.

    Google Scholar 

  • Steinberg, M. (1964). Cell Membranes in Development. San Diego: Academic Press.

    Google Scholar 

  • Taber, L. A., and Eggers, D. W. (1996). Theoretical study of stress-modulated growth in the aorta. J. Theor. Biol. 180:343–357.

    Article  Google Scholar 

  • Taber, L. A., and Perucchio, R. (2001). Modeling heart development. J. Elasticity 61:165–197.

    Article  MathSciNet  Google Scholar 

  • Taber, L. A., Keller, B. B., and Clard, E. B. (1992). Cardiac mechanics in the stage-16 chick embryo. J. Biomech. Eng. 114:427–434.

    Google Scholar 

  • Taber, L. A. (1995). Biomechanics of growth, remodelling, and morphognesis. Appl. Mech. Rev. 48:487–543.

    Article  Google Scholar 

  • Taber, L. A. (1998a). Biomechanical growth laws for muscle tissue. J. Theor. Biol. 193:201–213.

    Article  Google Scholar 

  • Taber, L. A. (1998b). Mechanical aspects of heart development. Prog. Biophys. Molec. Biol. 69:225–254.

    Article  Google Scholar 

  • Taber, L. A. (1998c). A model for aortic growth based on fluid shear and fiber stress. J. Biomech. Eng. 120:348–354.

    Google Scholar 

  • Vaishnav, R. N., and Vossoughi, J. (1983). Estimation of residual strains in aortic segments. In Hall, C. W., ed., Recent Developments in Biomedical Engineering. New York: Pergamon Press. 330–333.

    Google Scholar 

  • Vaishnav, R. N., and Vossoughi, J. (1987). Residual stress and strain in aortic segments. J. Biomech. 20:235–239.

    Article  Google Scholar 

  • Walker, D. C., Southgate, J. S., Hill, G., Holcombe, M., Hose, D. R., Wood, S. M., Macneil, S., and Smallwood, R. H. (2004). The epitheliome: modeling the social behavior of cells. Biosystems 76:89–100.

    Article  Google Scholar 

  • Wang, L., Fritton, S. P., Cowin, S. C., and Weinbaum, S. (1999). Fluid pressure relaxation mechanisms in osteonal bone specimens: modeling of an oscillatory bending experiment. J. Biomech. 32:663–672.

    Article  Google Scholar 

  • Wang, L., Cowin, S. C., Weinbaum, S., and Fritton, S. P. (2000). Modeling tracer transport in an osteon under cyclic loading. Ann. Biomed. Eng. 28:1200–1209.

    Article  Google Scholar 

  • Wang, L., Fritton, S. P., Weinbaum, S., and Cowin, S. C. (2003). On bone adaptation due to venous stasis. J. Biomech. 36:1439–1451.

    Article  Google Scholar 

  • Weinbaum, S., Cowin, S. C., and Zeng, Y. (1994). A model for the excitation of ostecytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27:339–360.

    Article  Google Scholar 

  • Xie, J. P., Liu, S. Q., Yang, R. F., and Fung, Y. C. (1991). The zero-stress state of rat veins and vena cava. J. Biomech. Eng. 113:36–41.

    Google Scholar 

  • You, L., Cowin, S. C., Schaffler, M., and Weinbaum, S. (2001). A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J. Biomech. 34:1375–1386.

    Article  Google Scholar 

  • Zhang, D., Cowin, S. C., and Weinbaum, S. (1998). Electrical signal transmission in a bone cell network: The influence of a discrete gap junction. Ann. Biomed. Eng. 26:644–659.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cowin, S.C. (2006). On the Modeling of Growth and Adaptation. In: Holzapfel, G.A., Ogden, R.W. (eds) Mechanics of Biological Tissue. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31184-X_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-31184-X_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25194-1

  • Online ISBN: 978-3-540-31184-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics