Skip to main content

Mathematical Modelling of Cardiac Mechanoenergetics

  • Chapter
Mechanics of Biological Tissue

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bovendeerd, P. H. M., Arts, T., Huyghe, J. M., van Campen, D. H., and Reneman, R. S. (1992). Dependence of local left ventricular wall mechanics on myocardial fiber orientation: A model study. J. Biomech. 25:1129–1140.

    Article  Google Scholar 

  • Engelbrecht, J., Vendelin, M., and Maugin, G. A. (2000). Hierarchical internal variables reflecting microstructural properties: Application to cardiac muscle contraction. J. Non-Equilib. Thermodyn. 25:119–130.

    Article  MATH  Google Scholar 

  • Glass, L., Hunter, P., and McCulloch, A., eds. (1991). Theory of Heart. Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function. New York: Springer.

    Google Scholar 

  • Hill, T. L. (1974). Theoretical formalism for the sliding filament model of contraction of striated muscle. part I. Prog. Biophys. Molec. Biol. 28:267–340.

    Article  Google Scholar 

  • Humphrey, J. D. (2003). Continuum biomechanics of soft biological tissues. Proc. R. Soc. Lond. A 459:3–46.

    Article  MATH  MathSciNet  Google Scholar 

  • Hunter, P. J., Pullan, A. J., and Smaill, B. H. (2003). Modeling total heart function. Ann. Rev. Biomed. Eng. 5:147–177.

    Article  Google Scholar 

  • Huxley, A. F. (1957). Muscle structure and theories of contraction. Prog. Biophys. and Biophys. Chem. 7:257–318.

    Google Scholar 

  • Kohl, P., Noble, D., Winslow, R. L., and Hunter, P. (2000). Computational modelling of biological systems: tools and visions. Philos. Trans. R. Soc. Lond. A 358:579–610.

    Article  MATH  Google Scholar 

  • Kolston, P. J. (2000). Finite-element modelling: a new toll for a biologist. Philos. Trans. R. Soc. Lond. A 358:611–631.

    Article  MATH  Google Scholar 

  • Maugin, G. A., and Engelbrecht, J. (1994). A thermodynamical viewpoint on nerve pulse dynamics. J. Non-Equilib. Thermodyn. 19:9–23.

    MATH  Google Scholar 

  • Maugin, G. A., and Muschik, W. (1994). Thermodynamics with internal variables. J. Non-Equilib. Thermodyn. 19:217–249, 250–289. in two parts.

    MATH  Google Scholar 

  • Maugin, G. A. (1990). Internal variables and dissipative structures. J. Non-Equilib. Thermodyn. 15:173–192.

    Article  Google Scholar 

  • van Campen, D. H., Huyghe, J. M., Boverndeerd, P. H. M., and Arts, T. (1994). Biomechanics of heart muscle. Eur. J. Mech. A/Solids 13(suppl):19–41.

    MATH  Google Scholar 

  • van Leeuwen, J., and Aerts, P. (2003). Modelling in biomechanics. Philos. Trans. R. Soc. Lond. B 358:1425–1603.

    Article  Google Scholar 

  • Olsen, C. O., Rankin, J. S., Arentzen, C. E., Ring, W. S., McHale, P. A., and Anderson, R. W. (1981). The deformational characteristics of the left ventricle in the conscious dog. Circ. Res. 49:843–855.

    Google Scholar 

  • Streeter, D. D., and Hanna, W. T. (1973). Engineering mechanics for successive states in canine left ventricular myocardium. I. cavity and wall geometry. Circ. Res. 33(6):639–655.

    Google Scholar 

  • Vendelin, M., Bovendeerd, P. H. M., Arts, T., Engelbrecht, J., and van Campen, D. H. (2000). Cardiac mechanoenergetics replicated by cross-bridge model. Ann. Biomed. Eng. 28:629–640.

    Article  Google Scholar 

  • Vendelin, M., Bovendeerd, P. H. M., Engelbrecht, J., and Arts, T. (2002). Optimizing ventricular fibers: uniform strain or stress, but not ATP consumption, leads to high efficiency. Am. J. Physiol. Heart Circ. Physiol. 283:H1072–H1081.

    Google Scholar 

  • Zipes, D. P., and Jalife, J., eds. (1995). Cardiac Electrophysiology: From Cell to Bedside. Philadelphia: Saunders.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Engelbrecht, J., Vendelin, M. (2006). Mathematical Modelling of Cardiac Mechanoenergetics. In: Holzapfel, G.A., Ogden, R.W. (eds) Mechanics of Biological Tissue. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31184-X_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-31184-X_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25194-1

  • Online ISBN: 978-3-540-31184-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics