Advertisement

Mathematical Modelling of Cardiac Mechanoenergetics

  • J. Engelbrecht
  • M. Vendelin

Keywords

Left Ventricle Internal Variable Active Stress Isotonic Contraction Huxley Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bovendeerd, P. H. M., Arts, T., Huyghe, J. M., van Campen, D. H., and Reneman, R. S. (1992). Dependence of local left ventricular wall mechanics on myocardial fiber orientation: A model study. J. Biomech. 25:1129–1140.CrossRefGoogle Scholar
  2. Engelbrecht, J., Vendelin, M., and Maugin, G. A. (2000). Hierarchical internal variables reflecting microstructural properties: Application to cardiac muscle contraction. J. Non-Equilib. Thermodyn. 25:119–130.CrossRefzbMATHGoogle Scholar
  3. Glass, L., Hunter, P., and McCulloch, A., eds. (1991). Theory of Heart. Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function. New York: Springer.Google Scholar
  4. Hill, T. L. (1974). Theoretical formalism for the sliding filament model of contraction of striated muscle. part I. Prog. Biophys. Molec. Biol. 28:267–340.CrossRefGoogle Scholar
  5. Humphrey, J. D. (2003). Continuum biomechanics of soft biological tissues. Proc. R. Soc. Lond. A 459:3–46.zbMATHMathSciNetCrossRefGoogle Scholar
  6. Hunter, P. J., Pullan, A. J., and Smaill, B. H. (2003). Modeling total heart function. Ann. Rev. Biomed. Eng. 5:147–177.CrossRefGoogle Scholar
  7. Huxley, A. F. (1957). Muscle structure and theories of contraction. Prog. Biophys. and Biophys. Chem. 7:257–318.Google Scholar
  8. Kohl, P., Noble, D., Winslow, R. L., and Hunter, P. (2000). Computational modelling of biological systems: tools and visions. Philos. Trans. R. Soc. Lond. A 358:579–610.CrossRefzbMATHGoogle Scholar
  9. Kolston, P. J. (2000). Finite-element modelling: a new toll for a biologist. Philos. Trans. R. Soc. Lond. A 358:611–631.zbMATHCrossRefGoogle Scholar
  10. Maugin, G. A., and Engelbrecht, J. (1994). A thermodynamical viewpoint on nerve pulse dynamics. J. Non-Equilib. Thermodyn. 19:9–23.zbMATHGoogle Scholar
  11. Maugin, G. A., and Muschik, W. (1994). Thermodynamics with internal variables. J. Non-Equilib. Thermodyn. 19:217–249, 250–289. in two parts.zbMATHGoogle Scholar
  12. Maugin, G. A. (1990). Internal variables and dissipative structures. J. Non-Equilib. Thermodyn. 15:173–192.CrossRefGoogle Scholar
  13. van Campen, D. H., Huyghe, J. M., Boverndeerd, P. H. M., and Arts, T. (1994). Biomechanics of heart muscle. Eur. J. Mech. A/Solids 13(suppl):19–41.zbMATHGoogle Scholar
  14. van Leeuwen, J., and Aerts, P. (2003). Modelling in biomechanics. Philos. Trans. R. Soc. Lond. B 358:1425–1603.CrossRefGoogle Scholar
  15. Olsen, C. O., Rankin, J. S., Arentzen, C. E., Ring, W. S., McHale, P. A., and Anderson, R. W. (1981). The deformational characteristics of the left ventricle in the conscious dog. Circ. Res. 49:843–855.Google Scholar
  16. Streeter, D. D., and Hanna, W. T. (1973). Engineering mechanics for successive states in canine left ventricular myocardium. I. cavity and wall geometry. Circ. Res. 33(6):639–655.Google Scholar
  17. Vendelin, M., Bovendeerd, P. H. M., Arts, T., Engelbrecht, J., and van Campen, D. H. (2000). Cardiac mechanoenergetics replicated by cross-bridge model. Ann. Biomed. Eng. 28:629–640.CrossRefGoogle Scholar
  18. Vendelin, M., Bovendeerd, P. H. M., Engelbrecht, J., and Arts, T. (2002). Optimizing ventricular fibers: uniform strain or stress, but not ATP consumption, leads to high efficiency. Am. J. Physiol. Heart Circ. Physiol. 283:H1072–H1081.Google Scholar
  19. Zipes, D. P., and Jalife, J., eds. (1995). Cardiac Electrophysiology: From Cell to Bedside. Philadelphia: Saunders.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. Engelbrecht
    • 1
  • M. Vendelin
    • 1
    • 2
  1. 1.Centre for Nonlinear StudiesTallinn Technical UniversityEstonia
  2. 2.Laboratory of Fundamental and Applied BioenergeticsUniversité J. FourierFrance

Personalised recommendations