Advertisement

Prediction of Changes in Cell-substrate Contact under Cyclic Substrate Deformation Using Cohesive Zone Modelling

  • J. P. McGarry
  • B. P. Murphy
  • P. E. McHugh

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beltz, G. E., and Rice, J. R. (1991). Dislocation nucleation versus cleavage decohesion at crack tips. In Lowe, T. C., Rollett, A. D., Follansbee, P. S., and Daehn, G. S., eds., Modelling the Deformation of Crystalline Solids. Warrendale, PA, USA: Proceedings TMS-AIME. 457–480.Google Scholar
  2. Belytschko, T., Liu, W. K., and Moran, B. (2000). Nonlinear Finite Elements for Continua and Structures. New York: John Wiley and Sons.zbMATHGoogle Scholar
  3. Davies, P. F., Robotewskyj, A., and Griem, M. L. (1993). Endothelial cell adhesion in real time. J. Clin. Invest. 91:2640–2652.CrossRefGoogle Scholar
  4. Hibbitt, Karlsson, and Sorensen., eds. (2002). ABAQUS/Standard User’s Manual, Version 6.3. Pawtucket, USA: Hibbitt, Karlsson and Sorensen, Inc. (HKS).Google Scholar
  5. Leckband, D., and Israelachvili, J. (2001). Intermolecular forces in biology. Quart. Rev. Biophys. 34:105–267.CrossRefGoogle Scholar
  6. Leipzig, N. C., and Athanasiou, K. A. (2004). Unconfined creep compression of chondrocytes. J. Biomech.. in press.Google Scholar
  7. Neidlinger-Wilke, C., Grood, E. S., Wang, J. H.-C., Brand, R. A., and Claes, L. (2001). Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates. J. Orthop. Res. 19:286–293.CrossRefGoogle Scholar
  8. Sato, M., Theret, D. P., Wheeler, L. T., Ohshima, N., and Nerem, R. M. (1990). Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J. Biomech. Eng. 112:263–268.Google Scholar
  9. Takemasa, T., Yamaguchi, T., Yamamoto, Y., Sugimoto, K., and Yamashita, K. (1998). Oblique alignment of stress fibers in cells reduces the mechanical stress in cyclically deforming fields. Eur. J. Cell Biol. 77:91–99.Google Scholar
  10. Thoumine, O., Cardoso, O., and Meister, J.-J. (1999). Changes in the mechanical properties of fibroblasts during spreading: a micromanipulation study. Eur. Biophys. 28:222–234.CrossRefGoogle Scholar
  11. Wang, J. H.-C., Ip, W., Boissy, R., and Grood, E. S. (1995). Cell orientation response to cyclically deformed substrates: Experimental validation of a cell model. J. Biomech. 28:1543–1552.CrossRefGoogle Scholar
  12. Wang, J. H.-C., Goldschmidt-Clermont, P., Willie, J., and Yin, F. C.-P. (2001). Specificity of endothelial cell reorientation in response to cyclic mechanical stretching. J. Biomech. 34:1563–1572.CrossRefGoogle Scholar
  13. Wang, J. H.-C. (2000). Substrate deformation determined actin cytoskeleton reorganization: A mathematical modelling and experimental study. J. Theor. Biol. 202:33–41.CrossRefGoogle Scholar
  14. Xu, X.-P., and Needleman, A. (1993). Void nucleation by inclusion debonding in crystal matrix. Model. Simul. Mater. Sci. Eng. 1:111–132.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. P. McGarry
    • 1
  • B. P. Murphy
    • 1
  • P. E. McHugh
    • 1
  1. 1.National Centre for Biomedical Engineering Science and the Department of Mechanical and Biomedical EngineeringNational University of IrelandIreland

Personalised recommendations