MSL Proteins and the Regulation of Gene Expression

  • S. Rea
  • A. AkhtarEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 310)


Epigenetics describes changes in genome function that occur without a change in the DNA sequence. Dosage compensation is a prime example of the regulation of gene expression by an epigenetic mechanism. Dosage compensation has evolved to balance the expression of sex-linked genes in males and females, which possess different numbers of sex chromosomes. However, the genetic sequence of the chromosomes is the same in both sexes. This mechanism therefore needs (1) to function in a sex-specific manner, (2) to target the sex chromosome from amongst the autosomes and (3) to establish and maintain through development a precise, equalised level of gene expression in one sex compared to the other. The process by which dosage compensation is orchestrated has been well characterised in fruit flies and mammals. Although each has evolved a specific dosage-compensation mechanism, these systems share some underlying themes; the molecular components that mediate dosage compensation in both include non-coding RNA molecules, which act as nucleation points for the compensation process. Both systems utilise chromatin-modifying enzymes to remodel large domains of a chromosome. This review will discuss the mechanism of dosage compensation in Drosophila in light of recent developments that have brought into question the previous model of dosage compensation.


Histone Acetylation Polytene Chromosome Dosage Compensation High Order Chromatin Twofold Upregulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhtar A, Becker PB (2000) Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 5:367–375PubMedCrossRefGoogle Scholar
  2. Akhtar A, Zink D, Becker PB (2000) Chromodomains are protein-RNA interaction modules. Nature 407:405–409PubMedCrossRefGoogle Scholar
  3. Amrein H, Axel R (1997) Genes expressed in neurons of adult male Drosophila. Cell 88:459–469PubMedCrossRefGoogle Scholar
  4. Bashaw GJ, Baker BS (1995) The msl-2 dosage compensation gene of Drosophila encodes a putative DNA-binding protein whose expression is sex specifically regulated by Sex-lethal. Development 121:3245–3258PubMedGoogle Scholar
  5. Bashaw GJ, Baker BS (1997) The regulation of the Drosophila msl-2 gene reveals a function for Sex-lethal in translational control. Cell 89:789–798PubMedCrossRefGoogle Scholar
  6. Bhadra U, Pal-Bhadra M, Birchler JA (1999) Role of the male specific lethal (msl) genes in modifying the effects of sex chromosomal dosage in Drosophila. Genetics 152:249–268PubMedGoogle Scholar
  7. Bhadra U, Pal-Bhadra M, Birchler JA (2000) Histone acetylation and gene expression analysis of sex lethal mutants in Drosophila. Genetics 155:753–763PubMedGoogle Scholar
  8. Birchler JA (1992) Expression of cis-regulatory mutations of the white locus in metafemales of Drosophila melanogaster. Genet Res 59:11–18PubMedGoogle Scholar
  9. Birchler JA (1996) X chromosome dosage compensation in Drosophila. Science 272:1190–1191PubMedGoogle Scholar
  10. Birchler JA, Schwartz D (1979) Mutational study of the alcohol dehydrogenase-1 FCm duplication in maize. Biochem Genet 17:1173–1180PubMedCrossRefGoogle Scholar
  11. Birchler JA, Bhadra U, Bhadra MP, Auger DL (2001) Dosage-dependent gene regulation in multicellular eukaryotes: implications for dosage compensation, aneuploid syndromes, and quantitative traits. Dev Biol 234:275–288PubMedCrossRefGoogle Scholar
  12. Birchler JA, Pal-Bhadra M, Bhadra U (2003) Dosage dependent gene regulation and the compensation of the X chromosome in Drosophila males. Genetica 117:179–190PubMedCrossRefGoogle Scholar
  13. Bone JR, Lavender J, Richman R, Palmer MJ, Turner BM, Kuroda MI (1994) Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev 8:96–104PubMedGoogle Scholar
  14. Bouazoune K, Korenjak M, Brehm A (2004) The dosage-compensation complex in flies and humans. Genome Biol 5:352PubMedCrossRefGoogle Scholar
  15. Buscaino A, Kocher T, Kind JH, Holz H, Taipale M, Wagner K, Wilm M, Akhtar A (2003) MOF-regulated acetylation of MSL-3 in the Drosophila dosage compensation complex. Mol Cell 11:1265–1277PubMedCrossRefGoogle Scholar
  16. Chang KA, Kuroda MI (1998) Modulation of MSL1 abundance in female Drosophila contributes to the sex specificity of dosage compensation. Genetics 150:699–709PubMedGoogle Scholar
  17. Chiang PW, Kurnit DM (2003) Study of dosage compensation in Drosophila. Genetics 165:1167–1181PubMedGoogle Scholar
  18. Copps K, Richman R, LymanL M, Chang KA, Rampersad-Ammons J, Kuroda MI(1998) Complex formation by the Drosophila MSL proteins: role of the MSL2 RING finger in protein complex assembly. EMBO J 17:5409–5417PubMedCrossRefGoogle Scholar
  19. Corona DF, Clapier CR, Becker PB, Tamkun JW (2002) Modulation of ISWI function by site-specific histone acetylation. EMBO Rep 3:242–247PubMedCrossRefGoogle Scholar
  20. de la Cruz X, Lois S, Sanchez-Molina S, Martinez-Balbas MA (2005) Do proteinmotifs read the histone code? Bioessays 27:164–175PubMedCrossRefGoogle Scholar
  21. Demakova OV, Kotlikova IV, Gordadze PR, Alekseyenko AA, Kuroda MI, Zhimulev IF (2003) The MSL complex levels are critical for its correct targeting to the chromosomes in Drosophila melanogaster. Chromosoma 112:103–115PubMedCrossRefGoogle Scholar
  22. Deuring R, Fanti L, Armstrong JA, Sarte M, Papoulas O, Prestel M, Daubresse G, Verardo M, Moseley SL, Berloco M, et al (2000) The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol Cell 5:355–365PubMedCrossRefGoogle Scholar
  23. DiBartolomeis SM, Tartof KD, Jackson FR (1992) A superfamily of Drosophila satellite related (SR) DNA repeats restricted to the X chromosome euchromatin. Nucleic Acids Res 20:1113–1116PubMedGoogle Scholar
  24. Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3:224–229PubMedCrossRefGoogle Scholar
  25. Erickson JW, Cline TW (1998) Key aspects of the primary sex determination mechanism are conserved across the genus Drosophila. Development 125:3259–3268PubMedGoogle Scholar
  26. Fagegaltier D, Baker BS (2004) X chromosome sites autonomously recruit the dosage compensation complex in Drosophila males. PLoS Biol 2:e341PubMedCrossRefGoogle Scholar
  27. Franke A, Baker BS (1999) The rox1 and rox2 RNAs are essential components of the compensasome, which mediates dosage compensation in Drosophila. Mol Cell 4:117–122PubMedCrossRefGoogle Scholar
  28. Gebauer F, Grskovic M, Hentze MW (2003) Drosophila sex-lethal inhibits the stable association of the 40S ribosomal subunit with msl-2 mRNA. Mol Cell 11:1397–1404PubMedCrossRefGoogle Scholar
  29. Ghosh S, Chatterjee RN, Bunick D, Manning JE, Lucchesi JC (1989) The LSP1-alphagene of Drosophila melanogaster exhibits dosage compensation when it is relocated to a different site on the X chromosome. EMBO J 8:1191–1196PubMedGoogle Scholar
  30. Gilfillan GD, Dahlsveen IK, Becker PB (2004) Lifting a chromosome: dosage compensation in Drosophila melanogaster. FEBS Lett 567:8–14PubMedCrossRefGoogle Scholar
  31. Gorman M, Franke A, Baker BS (1995) Molecular characterization of the male-specific lethal-3 gene and investigations of the regulation of dosage compensation in Drosophila. Development 121:463–475PubMedGoogle Scholar
  32. Grskovic M, Hentze MW, Gebauer F (2003) A co-repressor assembly nucleated by Sexlethal in the 3’UTR mediates translational control of Drosophila msl-2 mRNA. EMBO J 22:5571–5581PubMedCrossRefGoogle Scholar
  33. Gu W, Wei X, Pannuti A, Lucchesi JC (2000) Targeting the chromatin-remodeling MSL complex of Drosophila to its sites of action on the X chromosome requires both acetyl transferase and ATPase activities. EMBO J 19:5202–5211PubMedCrossRefGoogle Scholar
  34. Henry KW, Wyce A, Lo WS, Duggan LJ, Emre NC, Kao CF, Pillus L, Shilatifard A, Osley MA, Berger SL (2003) Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 17:2648–2663PubMedCrossRefGoogle Scholar
  35. Hiebert JC, Birchler JA (1994) Effects of the maleless mutation on X and autosomal gene expression in Drosophila melanogaster. Genetics 136:913–926PubMedGoogle Scholar
  36. Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC (1997) mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBOJ 16:2054–2060CrossRefGoogle Scholar
  37. Hung MS, Shen CK (2003) Eukaryotic methyl-CpG-binding domain proteins and chromatin modification. Eukaryot Cell 2:841–846PubMedCrossRefGoogle Scholar
  38. Ishii K, Arib G, Lin C, Van Houwe G, Laemmli UK (2002) Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109:551–562PubMedCrossRefGoogle Scholar
  39. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080PubMedCrossRefGoogle Scholar
  40. Jin Y, Wang Y, Walker DL, Dong H, Conley C, Johansen J, Johansen KM (1999) JIL-1: a novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. Mol Cell 4:129–135PubMedCrossRefGoogle Scholar
  41. Jin Y, Wang Y, Johansen J, Johansen KM (2000) JIL-1, a chromosomal kinase implicated in regulation of chromatin structure, associates with the male specific lethal (MSL) dosage compensation complex. J Cell Biol 149:1005–1010PubMedCrossRefGoogle Scholar
  42. Joazeiro CA, Weissman AM (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell 102:549–552PubMedCrossRefGoogle Scholar
  43. Kageyama Y, Mengus G, Gilfillan G, Kennedy HG, Stuckenholz C, Kelley RL, Becker PB, Kuroda MI (2001) Association and spreading of the Drosophila dosage compensation complex from a discrete roX1 chromatin entry site. EMBO J 20:2236–2245PubMedCrossRefGoogle Scholar
  44. Kelley RL, Solovyeva I, Lyman LM, Richman R, Solovyev V, Kuroda MI (1995) Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell 81:867–877PubMedCrossRefGoogle Scholar
  45. Kelley RL, Wang J, Bell L, Kuroda MI (1997) Sex lethal controls dosage compensation in Drosophila by a non-splicing mechanism. Nature 387:195–199PubMedCrossRefGoogle Scholar
  46. Kelley RL, Meller VH, Gordadze PR, Roman G, Davis RL, Kuroda MI (1999) Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell 98:513–522PubMedCrossRefGoogle Scholar
  47. Kingston RE, Narlikar GJ (1999) ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev 13:2339–2352PubMedCrossRefGoogle Scholar
  48. Kuo MH, Zhou J, Jambeck P, Churchill ME, Allis CD (1998) Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev 12:627–639PubMedGoogle Scholar
  49. Kuo MH, vom Baur E, Struhl K, Allis CD (2000) Gcn4 activator targets Gcn5 histone acetyltransferase to specific promoters independently of transcription. Mol Cell 6:1309–1320PubMedCrossRefGoogle Scholar
  50. Kuroda MI, Kernan MJ, Kreber R, Ganetzky B, Baker BS (1991) The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell 66:935–947PubMedCrossRefGoogle Scholar
  51. Lowenhaupt K, Rich A, Pardue ML (1989) Nonrandom distribution of long monoand dinucleotide repeats in Drosophila chromosomes: correlations with dosage compensation, heterochromatin, and recombination. Mol Cell Biol 9:1173–1182PubMedGoogle Scholar
  52. Lyman LM, Copps K, Rastelli L, Kelley RL, Kuroda MI (1997) Drosophila male-specific lethal-2 protein: structure/function analysis and dependence on MSL-1 for chromosome association. Genetics 147:1743–1753PubMedGoogle Scholar
  53. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373PubMedCrossRefGoogle Scholar
  54. Marin I (2003) Evolution of chromatin-remodeling complexes: comparative genomics reveals the ancient origin of “novel” compensasome genes. J Mol Evol 56:527–539PubMedCrossRefGoogle Scholar
  55. Marin I, Baker BS (2000) Origin and evolution of the regulatory gene male-specific lethal-3. Mol Biol Evol 17:1240–1250PubMedGoogle Scholar
  56. Marin I, Franke A, Bashaw GJ, Baker BS (1996) The dosage compensation system of Drosophila is co-opted by newly evolved X chromosomes. Nature 383:160–163PubMedCrossRefGoogle Scholar
  57. Meller VH, Rattner BP (2002) The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J 21:1084–1091PubMedCrossRefGoogle Scholar
  58. Meller VH, Wu KH, Roman G, Kuroda MI, Davis RL (1997) roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 88:445–457PubMedCrossRefGoogle Scholar
  59. Meller VH, Gordadze PR, Park Y, Chu X, Stuckenholz C, Kelley RL, Kuroda MI (2000) Ordered assembly of roX RNAs into MSL complexes on the dosage-compensated X chromosome in Drosophila. Curr Biol 10:136–143PubMedCrossRefGoogle Scholar
  60. Mermoud JE, Popova B, Peters AH, Jenuwein T, Brockdorff N (2002) Histone H3 lysine 9 methylation occurs rapidly at the onset of random X inactivation. Curr Biol 12:247–251PubMedCrossRefGoogle Scholar
  61. Meyer BJ, Casson LP (1986) Caenorhabditis elegans compensates for the difference in X chromosome dosage between the sexes by regulating transcript levels. Cell 47:871–881PubMedCrossRefGoogle Scholar
  62. Mukherjee AS, Beermann W (1965) Synthesis of ribonucleic acid by the X-chromosomes of Drosophila melanogaster and the problem of dosage compensation. Nature 207:785–786PubMedCrossRefGoogle Scholar
  63. Nakajima T, Uchida C, Anderson SF, Lee CG, Hurwitz J, Parvin JD, Montminy M (1997) RNA helicase A mediates association of CBP with RNA polymerase II. Cell 90:1107–1112PubMedCrossRefGoogle Scholar
  64. Oh H, Bone JR, Kuroda MI (2004) Multiple classes of MSL binding sites target dosage compensation to the X chromosome of Drosophila. Curr Biol 14:481–487PubMedCrossRefGoogle Scholar
  65. Ohno S (1967) Sex Chromosomes and sex-linked genes. Springer-Verlag, Heidelberg, Berlin, New YorkGoogle Scholar
  66. Pal Bhadra M, Bhadra U, Kundu J, Birchler JA (2005) Gene expression analysis of the function of the MSL complex in Drosophila. Genetics 169:2061–2074CrossRefGoogle Scholar
  67. Pannuti A, Lucchesi JC (2000) Recycling to remodel: evolution of dosage-compensation complexes. Curr Opin Genet Dev 10:644–650PubMedCrossRefGoogle Scholar
  68. Pardue ML, Lowenhaupt K, Rich A, Nordheim A (1987) (dC-dA)n.(dG-dT)n sequences have evolutionarily conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and function. EMBO J 6:1781–1789PubMedGoogle Scholar
  69. Park Y, Kelley RL, Oh H, Kuroda MI, Meller VH (2002) Extent of chromatin spreading determined by roX RNA recruitment of MSL proteins. Science 298:1620–1623PubMedCrossRefGoogle Scholar
  70. Park Y, Mengus G, Bai X, Kageyama Y, Meller VH, Becker PB, Kuroda MI (2003) Sequence-specific targeting of Drosophila roX genes by the MSL dosage compensation complex. Mol Cell 11:977–986PubMedCrossRefGoogle Scholar
  71. Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131–135PubMedCrossRefGoogle Scholar
  72. Protacio RU, Li G, Lowary PT, Widom J (2000) Effects of histone tail domains on the rate of transcriptional elongation through a nucleosome. Mol Cell Biol 20:8866–8878PubMedCrossRefGoogle Scholar
  73. Rattner BP, Meller VH (2004) Drosophila male-specific lethal 2 protein controls sex-specific expression of the roX genes. Genetics 166:1825–1832PubMedCrossRefGoogle Scholar
  74. Reid JL, Iyer VR, Brown PO, Struhl K (2000) Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase. Mol Cell 6:1297–1307PubMedCrossRefGoogle Scholar
  75. Richter L, Bone JR, Kuroda MI (1996) RNA-dependent association of the Drosophila maleless protein with the male X chromosome. Genes Cells 1:325–336PubMedCrossRefGoogle Scholar
  76. Sabl JF, Birchler JA (1993) Dosage dependent modifiers of white alleles in Drosophila melanogaster. Genet Res 62:15–22PubMedCrossRefGoogle Scholar
  77. Sass GL, Pannuti A, Lucchesi JC (2003) Male-specific lethal complex of Drosophila targets activated regions of the X chromosome for chromatin remodeling. Proc Natl Acad Sci U S A 100:8287–8291PubMedCrossRefGoogle Scholar
  78. Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T (2004) Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 6:73–77PubMedCrossRefGoogle Scholar
  79. Scott MJ, Pan LL, Cleland SB, Knox AL, Heinrich J (2000) MSL1 plays a central role in assembly of the MSL complex, essential for dosage compensation in Drosophila. EMBO J 19:144–155PubMedCrossRefGoogle Scholar
  80. Smith ER, Pannuti A, Gu W, Steurnagel A, Cook RG, Allis CD, Lucchesi JC (2000) The drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol Cell Biol 20:312–318PubMedCrossRefGoogle Scholar
  81. Smith ER, Allis CD, Lucchesi JC (2001) Linking global histone acetylation to the transcription enhancement of X-chromosomal genes in Drosophila males. J Biol Chem 276:31483–31486PubMedCrossRefGoogle Scholar
  82. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45PubMedCrossRefGoogle Scholar
  83. Straub T, Neumann MF, Prestel M, Kremmer E, Kaether C, Haass C, Becker PB (2005) Stable chromosomal association of MSL2 defines a dosage-compensated nuclear compartment. Chromosoma 114(5):352–364PubMedCrossRefGoogle Scholar
  84. Taipale M, Rea S, Richter K, Vilar A, Lichter P, Imhof A, Akhtar A (2005) hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol 25(15):6798–6810PubMedCrossRefGoogle Scholar
  85. Taipale M, Akhtar A (2005) Chromatin mechanisms in Drosophila dosage compensation. Prog Mol Subcell Biol 38:123–149PubMedCrossRefGoogle Scholar
  86. Thomson S, Clayton AL, Mahadevan LC (2001) Independent dynamic regulation of histone phosphorylation and acetylation during immediate-early gene induction. Mol Cell 8:1231–1241PubMedCrossRefGoogle Scholar
  87. Tse C, Sera T, Wolffe AP, Hansen JC (1998) Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol 18:4629–4638PubMedGoogle Scholar
  88. Turner BM, Birley AJ, Lavender J (1992) Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69:375–384PubMedCrossRefGoogle Scholar
  89. Wang Y, Zhang W, Jin Y, Johansen J, Johansen KM (2001) The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell 105:433–443PubMedCrossRefGoogle Scholar
  90. Waring GL, Pollack JC (1987) Cloning and characterization of a dispersed, multicopy, X chromosome sequence in Drosophila melanogaster. Proc Natl Acad Sci U S A 84:2843–2847PubMedCrossRefGoogle Scholar
  91. Winkler GS, Kristjuhan A, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2002) Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo. Proc Natl Acad Sci U S A 99:3517–3522PubMedCrossRefGoogle Scholar
  92. Zhang Y (2003) Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev 17:2733–2740PubMedCrossRefGoogle Scholar
  93. Zhou S, Yang Y, Scott MJ, Pannuti A, Fehr KC, Eisen A, Koonin EV, Fouts DL, Wrightsman R, Manning JE, et al (1995) Male-specific lethal 2, a dosage compensation gene of Drosophila, undergoes sex-specific regulation and encodes a protein with a RING finger and a metallothionein-like cysteine cluster. EMBO J 14:2884–2895PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Gene expression programmeEuropean Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations