Methylation of Endogenous Human Retroelements in Health and Disease

  • W. A. SchulzEmail author
  • C. Steinhoff
  • A. R. Florl
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 310)


Retroelements constitute approximately 45% of the human genome. Long interspersed nuclear element (LINE) autonomous retrotransposons are predominantly represented by LINE-1, nonautonomous small interspersed nuclear elements (SINEs) are primarily represented by ALUs, and LTR retrotransposons by several families of human endogenous retroviruses (HERVs). The vast majority of LINE and HERV elements are densely methylated in normal somatic cells and contained in inactive chromatin. Methylation and chromatin structure together ensure a stable equilibrium between retroelements and their host. Hypomethylation and expression in developing germ cells opens a “window of opportunity” for retrotransposition and recombination that contribute to human evolution, but also inherited disease. In somatic cells, the presence of retroelements may be exploited to organize the genome into active and inactive regions, to separate domains and functional regions within one chromatin domain, to suppress transcriptional noise, and to regulate transcript stability. Retroelements, particularly ALUs, may also fulfill physiological roles during responses to stress and infections. Reactivation and hypomethylation of LINEs and HERVs may be important in the pathophysiology of cancer and various autoimmune diseases, contributing to chromosomal instability and chronically aberrant immune responses. The emerging insights into the pathophysiological importance of endogenous retroelements accentuate the gaps in our knowledge of how these elements are controlled in normal developing and mature cells.


Germ Cell Germ Cell Cancer Develop Germ Cell Endogenous Human Endogenous Retroelements 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alves G, Tatro A, Fanning T (1996) Differential methylation of human LINE-1 retrotransposons in malignant cells. Gene 176:39–44PubMedGoogle Scholar
  2. Antony JM, van Marle G, Opii W, Butterfield DA, Mallet F, Yong VW, Wallace JL, Deacon RM, Warren K, Power C (2004) Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci 7:1088–1095PubMedGoogle Scholar
  3. Armbruester V, Sauter M, Krautkraemer E, Meese E, Kleiman A, Best B, Roemer K, Mueller-Lantzsch N (2002) A novel gene from the human endogenous retrovirus K expressed in transformed cells. Clin Cancer Res 8:1800–1807PubMedGoogle Scholar
  4. Athanasiadis A, Rich A, Maas S (2004) Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol 2:e391PubMedGoogle Scholar
  5. Bailey JA, Carrel L, Chakravarti A, Eichler EE (2000) Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci U S A 97:6634–6639PubMedGoogle Scholar
  6. Bannert N, Kurth R (2004) Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci U S A 101Suppl 2:14572–14579PubMedGoogle Scholar
  7. Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3:370–379PubMedGoogle Scholar
  8. Becker KG, Swergold GD, Ozato K, Thayer RE (1993) Binding of the ubiquitous nuclear transcription factor YY1 to a cis regulatory sequence in the human LINE-1 transposable element. Hum Mol Genet 2:1697–1702PubMedGoogle Scholar
  9. Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–2402PubMedGoogle Scholar
  10. Bourc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99PubMedGoogle Scholar
  11. Bratthauer GL, Fanning TG (1992) Active LINE-1 retrotransposons in human testicular cancer. Oncogene 7:507–510PubMedGoogle Scholar
  12. Brudek T, Christensen T, Hansen HJ, Bobecka J, Moller-Larsen A (2004) Simultaneous presence of endogenous retrovirus and herpes virus antigens has profound effect on cell-mediated immune responses: implications for multiple sclerosis. AIDS Res Hum Retroviruses 20:415–423PubMedGoogle Scholar
  13. Chalitchagorn K, Shuangshoti S, Hourpai N, Kongruttanachok N, Tangkijvanich P, Thong-Ngam D, Voravud N, Sriuranpong V, Mutirangura A (2004) Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene 23:8841–8846PubMedGoogle Scholar
  14. Chesnokov I, Chu WM, Botchan MR, Schmid CW (1996) p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner. Mol Cell Biol 16:7084–7088PubMedGoogle Scholar
  15. Clerici M, Fusi ML, Caputo D, Guerini FR, Trabattoni D, Salvaggio A, Cazzullo CL, Arienti D, Villa ML, Urnovitz HB, Ferrante P (1999) Immune responses to antigens of human endogenous retroviruses in patients with acute or stable multiple sclerosis. J Neuroimmunol 99:173–182PubMedGoogle Scholar
  16. Conrad B, Weissmahr RN, Boni J, Arcari R, Schupbach J, Mach B (1997) A human endogenous retroviral superantigen as candidate autoimmune gene in type I diabetes. Cell 90:303–313PubMedGoogle Scholar
  17. Dante R, Dante-Paire J, Rigal D, Roizes G (1992) Methylation patterns of long interspersed repeated DNA and alphoid repetitive DNA from human cell lines and tumors. Anticancer Res 12:559–563PubMedGoogle Scholar
  18. De Smet C, Loriot A, Boon T (2004) Promoter-dependent mechanism leading to selective hypomethylation within the 5′ region of gene MAGE-A1 in tumor cells. Mol Cell Biol 24:4781–4790PubMedGoogle Scholar
  19. Dennis K, Fan T, Geiman T, Yan Q, Muegge K (2001) Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev 15:2940–2944PubMedGoogle Scholar
  20. Doerfler W (1991) Patterns of DNA methylation—evolutionary vestiges of foreign DNA inactivation as a host defense mechanism. A proposal. Biol Chem Hoppe Seyler 372:557–564PubMedGoogle Scholar
  21. Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455PubMedGoogle Scholar
  22. Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413PubMedGoogle Scholar
  23. Ehrlich M, Jiang G, Fiala E, Dome JS, Yu MC, Long TI, Youn B, Sohn OS, Widschwendter M, Tomlinson GE, Chintagumpala M, Champagne M, Parham D, Liang G, Malik K, Laird PW (2002) Hypomethylation and hypermethylation of DNA in Wilms tumors. Oncogene 21:6694–6702PubMedGoogle Scholar
  24. Ergün S, Buschmann C, Heukeshoven J, Dammann K, Schnieders F, Lauke H, Chalajour F, Kilic N, Stratling WH, Schumann GG (2004) Cell type-specific expression of LINE-1 open reading frames 1 and 2 in fetal and adult human tissues. J Biol Chem 279:27753–27763PubMedGoogle Scholar
  25. Estes SD, Stoler DL, Anderson GR (1995) Anoxic induction of a sarcoma virus-related VL30 retrotransposon is mediated by a cis-acting element which binds hypoxiainducible factor 1 and an anoxia-inducible factor. J Virol 69:6335–6341PubMedGoogle Scholar
  26. Ferreira R, Naguibneva I, Pritchard LL, Ait-Si-Ali S, Harel-Bellan A (2001) The Rb/chromatin connection and epigenetic control: opinion. Oncogene 20:3128–3133PubMedGoogle Scholar
  27. Fitzpatrick DR, Wilson CB (2003) Methylation and demethylation in the regulation of genes, cells, and responses in the immune system. Clin Immunol 109:37–45PubMedGoogle Scholar
  28. Florl AR, Schulz WA (2003) Peculiar structure and location of 9p21 homozygous deletion breakpoints in human cancer cells. Genes Chromosomes Cancer 37:141–148PubMedGoogle Scholar
  29. Florl AR, Lower R, Schmitz-Drager BJ, Schulz WA (1999) DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer 80:1312–1321PubMedGoogle Scholar
  30. Florl AR, Steinhoff C, Muller M, Seifert HH, Hader C, Engers R, Ackermann R, Schulz WA (2004) Coordinate hypermethylation at specific genes in prostate carcinoma precedes LINE-1 hypomethylation. Br J Cancer 91:985–994PubMedGoogle Scholar
  31. Fujinami RS, Libbey JE (1999) Endogenous retroviruses: are they the cause of multiple sclerosis? Trends Microbiol 7:263–264PubMedGoogle Scholar
  32. Fuke C, Shimabukuro M, Petronis A, Sugimoto J, Oda T, Miura K, Miyazaki T, Ogura C, Okazaki Y, Jinno Y (2004) Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet 68:196–204PubMedGoogle Scholar
  33. Fukuoka J, Fujii T, Shih JH, Dracheva T, Meerzaman D, Player A, Hong K, Settnek S, Gupta A, Buetow K, Hewitt S, Travis WD, Jen J (2004) Chromatin remodeling factors and BRM/BRG1 expression as prognostic indicators in non-small cell lung cancer. Clin Cancer Res 10:4314–4324PubMedGoogle Scholar
  34. Geiman TM, Robertson KD (2002) Chromatin remodeling, histone modifications, and DNA methylation—how does it all fit together? J Cell Biochem 87:117–125PubMedGoogle Scholar
  35. Gibbons RJ, McDowell TL, Raman S, O’Rourke DM, Garrick D, Ayyub H, Higgs DR (2000) Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nat Genet 24:368–371PubMedGoogle Scholar
  36. Goldberg B, Urnovitz HB, Stricker RB (2000) Beyond danger: unmethylated CpG dinucleotides and the immunopathogenesis of disease. Immunol Lett 73:13–18PubMedGoogle Scholar
  37. Götzinger N, Sauter M, Roemer K, Mueller-Lantzsch N (1996) Regulation of human endogenous retrovirus-K Gag expression in teratocarcinoma cell lines and human tumours. J Gen Virol 77:2983–2990PubMedGoogle Scholar
  38. Graff JR, Herman JG, Myohanen S, Baylin SB, Vertino PM (1997) Mapping patterns of CpG island methylation in normal and neoplastic cells implicates both upstream and downstream regions in de novo methylation. J Biol Chem 272:22322–22329PubMedGoogle Scholar
  39. Greally JM (2002) Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome. Proc Natl Acad Sci U S A 99:327–332PubMedGoogle Scholar
  40. Grover D, Mukerji M, Bhatnagar P, Kannan K, Brahmachari SK (2004) Alu repeat analysis in the complete human genome: trends and variations with respect to genomic composition. Bioinformatics 20:813–817PubMedGoogle Scholar
  41. Hagan CR, Rudin CM (2002) Mobile genetic element activation and genotoxic cancer therapy: potential clinical implications. Am J Pharmacogenomics 2:25–35PubMedGoogle Scholar
  42. Hagan CR, Sheffield RF, Rudin CM (2003) Human Alu element retrotransposition induced by genotoxic stress. Nat Genet 35:219–220PubMedGoogle Scholar
  43. Han JS, Szak ST, Boeke JD (2004) Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429:268–274PubMedGoogle Scholar
  44. Hansen RS (2003) Xinactivation-specific methylation of LINE-1 elements by DNMT3B: implications for the Lyon repeat hypothesis. Hum Mol Genet 12:2559–2567PubMedGoogle Scholar
  45. Hardeland U, Bentele M, Lettieri T, Steinacher R, Jiricny J, Schar P (2001) Thymine DNA glycosylase. Prog Nucleic Acid Res Mol Biol 68:235–253PubMedGoogle Scholar
  46. Hasse A, Schulz WA (1994) Enhancement of reporter gene de novo methylation by DNA fragments from the alpha-fetoprotein control region. J Biol Chem 269:1821–1826PubMedGoogle Scholar
  47. Hata K, Sakaki Y (1997) Identification of critical CpG sites for repression of L1 transcription by DNA methylation. Gene 189:227–234PubMedGoogle Scholar
  48. Hendricks KB, Shanahan F, Lees E (2004) Role for BRG1 in cell cycle control and tumor suppression. Mol Cell Biol 24:362–376PubMedGoogle Scholar
  49. Herve CA, Lugli EB, Brand A, Griffiths DJ, Venables PJ (2002) Autoantibodies to human endogenous retrovirus-K are frequently detected in health and disease and react with multiple epitopes. Clin Exp Immunol 128:75–82PubMedGoogle Scholar
  50. Hewitt SM, Fraizer GC, Saunders GF (1995) Transcriptional silencer of the Wilms’ tumor gene WT1 contains an Alu repeat. J Biol Chem 270:17908–17912PubMedGoogle Scholar
  51. Hiltunen MO, Yla-Herttuala S (2003) DNA methylation, smooth muscle cells, and atherogenesis. Arterioscler Thromb Vasc Biol 23:1750–1753PubMedGoogle Scholar
  52. Hoffmann MJ, Schulz WA (2005) Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol 83:296–321PubMedGoogle Scholar
  53. Huang H, Qian J, Proffit J, Wilber K, Jenkins R, Smith DI (1998) FRA7G extends over a broad region: coincidence of human endogenous retroviral sequences (HERVH) and small polydispersed circular DNAs (spcDNA) and fragile sites. Oncogene 16:2311–2319PubMedGoogle Scholar
  54. Huang J, Fan T, Yan Q, Zhu H, Fox S, Issaq HJ, Best L, Gangi L, Munroe D, Muegge K (2004) Lsh, an epigenetic guardian of repetitive elements. Nucleic Acids Res 32:5019–5028PubMedGoogle Scholar
  55. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945Google Scholar
  56. Jackson-Grusby L, Beard C, Possemato R, Tudor M, Fambrough D, Csankovszki G, Dausman J, Lee P, Wilson C, Lander E, Jaenisch R (2001) Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat Genet 27:31–39PubMedGoogle Scholar
  57. Januchowski R, Prokop J, Jagodzinski PP (2004) Role of epigenetic DNA alterations in the pathogenesis of systemic lupus erythematosus. J Appl Genet 45:237–248PubMedGoogle Scholar
  58. Jeffs AR, Benjes SM, Smith TL, Sowerby SJ, Morris CM (1998) The BCR gene recombines preferentially with Alu elements in complex BCR-ABL translocations of chronic myeloid leukaemia. Hum Mol Genet 7:767–776PubMedGoogle Scholar
  59. Ji W, Hernandez R, Zhang XY, Qu GZ, Frady A, Varela M, Ehrlich M (1997) DNA demethylation and pericentromeric rearrangements of chromosome 1. Mutat Res 379:33–41PubMedGoogle Scholar
  60. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428PubMedGoogle Scholar
  61. Jones RS, Potter SS (1985) L1 sequences in HeLa extrachromosomal circular DNA: evidence for circularization by homologous recombination. Proc Natl Acad Sci U S A 82:1989–1993PubMedGoogle Scholar
  62. Jürgens B, Schmitz-Drager BJ, Schulz WA (1996) Hypomethylation of L1 LINE sequences prevailing in human urothelial carcinoma. Cancer Res 56:5698–5703PubMedGoogle Scholar
  63. Kajikawa M, Okada N (2002) LINEs mobilize SINEs in the eel through a shared 3′ sequence. Cell 111:433–444PubMedGoogle Scholar
  64. Kan PX, Popendikyte V, Kaminsky ZA, Yolken RH, Petronis A (2004) Epigenetic studies of genomic retroelements in major psychosis. Schizophr Res 67:95–106PubMedGoogle Scholar
  65. Kaneda A, Tsukamoto T, Takamura-Enya T, Watanabe N, Kaminishi M, Sugimura T, Tatematsu M, Ushijima T (2004) Frequent hypomethylation in multiple promoter CpG islands is associated with global hypomethylation, but not with frequent promoter hypermethylation. Cancer Sci 95:58–64PubMedGoogle Scholar
  66. Kaplan MJ, Lu Q, Wu A, Attwood J, Richardson B (2004) Demethylation of promoter regulatory elements contributes to perforin overexpression in CD4+ lupus T cells. J Immunol 172:3652–3661PubMedGoogle Scholar
  67. Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632PubMedGoogle Scholar
  68. Khodarev NN, Bennett T, Shearing N, Sokolova I, Koudelik J, Walter S, Villalobos M, Vaughan AT (2000) LINE L1 retrotransposable element is targeted during the initial stages of apoptotic DNA fragmentation. J Cell Biochem 79:486–495PubMedGoogle Scholar
  69. Kim C, Rubin CM, Schmid CW (2001) Genome-wide chromatin remodeling modulates the Alu heat shock response. Gene 276:127–133PubMedGoogle Scholar
  70. Kim DD, Kim TT, Walsh T, Kobayashi Y, Matise TC, Buyske S, Gabriel A (2004) Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res 14:1719–1725PubMedGoogle Scholar
  71. Kleiman A, Senyuta N, Tryakin A, Sauter M, Karseladze A, Tjulandin S, Gurtsevitch V, Mueller-Lantzsch N (2004) HERV-K(HML-2) GAG/ENV antibodies as indicator for therapy effect in patients with germ cell tumors. Int J Cancer 110:459–461PubMedGoogle Scholar
  72. Knössl M, Lower R, Lower J (1999) Expression of the human endogenous retrovirus HTDV/HERV-K is enhanced by cellular transcription factor YY1. J Virol 73:1254–1261PubMedGoogle Scholar
  73. Kochanek S, Renz D, Doerfler W (1995) Transcriptional silencing of human Alu sequences and inhibition of protein binding in the box B regulatory elements by 5′-CG-3′ methylation. FEBS Lett 360:115–120PubMedGoogle Scholar
  74. Kolomietz E, Meyn MS, Pandita A, Squire JA (2002) The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes Cancer 35:97–112PubMedGoogle Scholar
  75. Kondo Y, Issa JP (2003) Enrichment for histone H3 lysine 9 methylation at Alu repeats in human cells. J Biol Chem 278:27658–27662PubMedGoogle Scholar
  76. Kuchen S, Seemayer CA, Rethage J, von Knoch R, Kuenzler P, Beat AM, Gay RE, Gay S, Neidhart M (2004) The L1 retroelement-related p40 protein induces p38delta MAP kinase. Autoimmunity 37:57–65PubMedGoogle Scholar
  77. Kurose K, Hata K, Hattori M, Sakaki Y (1995) RNA polymerase III dependence of the human L1 promoter and possible participation of the RNA polymerase II factor YY1 in the RNA polymerase III transcription system. Nucleic Acids Res 23:3704–3709PubMedGoogle Scholar
  78. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la BM, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedGoogle Scholar
  79. Larsson E, Andersson G (1998) Beneficial role of human endogenous retroviruses: facts and hypotheses. Scand J Immunol 48:329–338PubMedGoogle Scholar
  80. Laurent AM, Puechberty J, Prades C, Gimenez S, Roizes G (1997) Site-specific retro-transposition of L1 elements within human alphoid satellite sequences. Genomics 46:127–132PubMedGoogle Scholar
  81. Lavie L, Maldener E, Brouha B, Meese EU, Mayer J (2004) The human L1 promoter: variable transcription initiation sites and a major impact of upstream flanking sequence on promoter activity. Genome Res 14:2253–2260PubMedGoogle Scholar
  82. Levanon EY, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, Fligelman ZY, Shoshan A, Pollock SR, Sztybel D, Olshansky M, Rechavi G, Jantsch MF (2004) Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol 22:1001–1005PubMedGoogle Scholar
  83. Levine JJ, Stimson-Crider KM, Vertino PM (2003) Effects of methylation on expression of TMS1/ASC in human breast cancer cells. Oncogene 22:3475–3488PubMedGoogle Scholar
  84. Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673PubMedGoogle Scholar
  85. Li TH, Schmid CW (2001) Differential stress induction of individual Alu loci: implications for transcription and retrotransposition. Gene 276:135–141PubMedGoogle Scholar
  86. Lin CH, Hsieh SY, Sheen IS, Lee WC, Chen TC, Shyu WC, Liaw YF (2001) Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res 61:4238–4243PubMedGoogle Scholar
  87. Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476PubMedGoogle Scholar
  88. Liu WM, Schmid CW (1993) Proposed roles for DNA methylation in Alu transcriptional repression and mutational inactivation. Nucleic Acids Res 21:1351–1359PubMedGoogle Scholar
  89. Looijenga LH, Oosterhuis JW (2002) Pathobiology of testicular germ cell tumors: views and news. Anal Quant Cytol Histol 24:263–279PubMedGoogle Scholar
  90. Lower R (1999) The pathogenic potential of endogenous retroviruses: facts and fantasies. Trends Microbiol 7:350–356PubMedGoogle Scholar
  91. Lund AH, van Lohuizen M (2004) Epigenetics and cancer. Genes Dev 18:2315–2335PubMedGoogle Scholar
  92. Marguerat S, Wang WY, Todd JA, Conrad B (2004) Association of human endogenous retrovirus K-18 polymorphisms with type 1 diabetes. Diabetes 53:852–854PubMedGoogle Scholar
  93. Medina PP, Carretero J, Fraga MF, Esteller M, Sidransky D, Sanchez-Cespedes M (2004) Genetic and epigenetic screening for gene alterations of the chromatinremodeling factor, SMARCA4/BRG1, in lungtumors. Genes Chromosomes Cancer 41:170–177PubMedGoogle Scholar
  94. Menendez L, Benigno BB, McDonald JF (2004) L1 and HERV-W retrotransposons are hypomethylated in human ovarian carcinomas. Mol Cancer 3:12PubMedGoogle Scholar
  95. Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, LaVallie E, Tang XY, Edouard P, Howes S, Keith JC Jr, McCoy JM (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789PubMedGoogle Scholar
  96. Mimori K, Druck T, Inoue H, Alder H, Berk L, Mori M, Huebner K, Croce CM (1999) Cancer-specific chromosome alterations in the constitutive fragile region FRA3B. Proc Natl Acad Sci U S A 96:7456–7461PubMedGoogle Scholar
  97. Monteyne P, Bureau JF, Brahic M (1998) Viruses and multiple sclerosis. Curr Opin Neurol 11:287–291PubMedGoogle Scholar
  98. Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, Taccioli GE, Batzer MA, Moran JV (2002) DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31:159–165PubMedGoogle Scholar
  99. Muegge K, Young H, Ruscetti F, Mikovits J (2003) Epigenetic control during lymphoid development and immune responses: aberrant regulation, viruses, and cancer. Ann N Y Acad Sci 983:55–70PubMedGoogle Scholar
  100. Muller K, Heller H, Doerfler W (2001) Foreign DNA integration. Genome-wide perturbations of methylation and transcription in the recipient genomes. J Biol Chem 276:14271–14278PubMedGoogle Scholar
  101. Neidhart M, Rethage J, Kuchen S, Kunzler P, Crowl RM, Billingham ME, Gay RE, Gay S (2000) Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: association with genomic DNA hypomethylation and influence on gene expression. Arthritis Rheum 43:2634–2647PubMedGoogle Scholar
  102. Nelson PN, Carnegie PR, Martin J, Davari EH, Hooley P, Roden D, Rowland-Jones S, Warren P, Astley J, Murray PG (2003) Demystified. Human endogenous retroviruses. Mol Pathol 56:11–18PubMedGoogle Scholar
  103. Oelke K, Lu Q, Richardson D, Wu A, Deng C, Hanash S, Richardson B (2004) Overexpression of CD70 and overstimulation of IgG synthesis by lupus T cells and T cells treated with DNA methylation inhibitors. Arthritis Rheum 50:1850–1860PubMedGoogle Scholar
  104. Ogasawara H, Okada M, Kaneko H, Hishikawa T, Sekigawa I, Hashimoto H (2003) Possible role of DNA hypomethylation in the induction of SLE: relationship to the transcription of human endogenous retroviruses. Clin Exp Rheumatol 21:733–738PubMedGoogle Scholar
  105. Okada M, Ogasawara H, Kaneko H, Hishikawa T, Sekigawa I, Hashimoto H, Maruyama N, Kaneko Y, Yamamoto N (2002) Role of DNA methylation in transcription of human endogenous retrovirus in the pathogenesis of systemic lupus erythematosus. J Rheumatol 29:1678–1682PubMedGoogle Scholar
  106. Ostertag EM, Kazazian HH Jr (2001) Biology of mammalian L1 retrotransposons. Annu Rev Genet 35:501–538PubMedGoogle Scholar
  107. Ovchinnikov I, Rubin A, Swergold GD (2002) Tracing the LINEs of human evolution. Proc Natl Acad Sci U S A 99:10522–10527PubMedGoogle Scholar
  108. Perron H, Garson JA, Bedin F, Beseme F, Paranhos-Baccala G, Komurian-Pradel F, Mallet F, Tuke PW, Voisset C, Blond JL, Lalande B, Seigneurin JM, Mandrand B (1997) Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis. Proc Natl Acad Sci U S A 94:7583–7588PubMedGoogle Scholar
  109. Perron H, Perin JP, Rieger F, Alliel PM (2000) Particle-associated retroviral RNA and tandem RGH/HERV-W copies on human chromosome 7q: possible components of a ‘chain-reaction’ triggered by infectious agents in multiple sclerosis? J Neurovirol 6Suppl 2:S67–S75PubMedGoogle Scholar
  110. Qu GZ, Grundy PE, Narayan A, Ehrlich M (1999) Frequent hypomethylation inWilms tumors of pericentromeric DNA in chromosomes 1 and 16. Cancer Genet Cytogenet 109:34–39PubMedGoogle Scholar
  111. Raschke S, Balz V, Efferth T, Schulz WA, Florl AR (2005) Homozygous deletions of CDKN2A caused by alternative mechanisms in various human cancer cell lines. Genes Chromosomes Cancer 42:58–67PubMedGoogle Scholar
  112. Richardson B (2003) DNA methylation and autoimmune disease. Clin Immunol 109:72–79PubMedGoogle Scholar
  113. Rubin CM, VandeVoort CA, Teplitz RL, Schmid CW (1994) Alu repeated DNAs are differentially methylated in primate germ cells. Nucleic Acids Res 22:5121–5127PubMedGoogle Scholar
  114. Rubin CM, Kimura RH, Schmid CW (2002) Selective stimulation of translational expression by Alu RNA. Nucleic Acids Res 30:3253–3261PubMedGoogle Scholar
  115. Rudiger NS, Gregersen N, Kielland-Brandt MC (1995) One short well conserved region of Alu-sequences is involved in human gene rearrangements and has homology with prokaryotic chi. Nucleic Acids Res 23:256–260PubMedGoogle Scholar
  116. Santourlidis S, Florl A, Ackermann R, Wirtz HC, Schulz WA (1999) High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate 39:166–174PubMedGoogle Scholar
  117. Santourlidis S, Trompeter HI, Weinhold S, Eisermann B, Meyer KL, Wernet P, Uhrberg M (2002) Crucial role of DNA methylation in determination of clonally distributed killer cell Ig-like receptor expression patterns in NK cells. J Immunol 169:4253–4261PubMedGoogle Scholar
  118. Schiavetti F, Thonnard J, Colau D, Boon T, Coulie PG (2002) A human endogenous retroviral sequence encoding an antigen recognized on melanoma by cytolytic T lymphocytes. Cancer Res 62:5510–5516PubMedGoogle Scholar
  119. Schmid CW (1998) Does SINE evolution preclude Alu function? Nucleic Acids Res 26:4541–4550PubMedGoogle Scholar
  120. Schön U, Seifarth W, Baust C, Hohenadl C, Erfle V, Leib-Mosch C (2001) Cell typespecific expression and promoter activity of human endogenous retroviral long terminal repeats. Virology 279:280–291PubMedGoogle Scholar
  121. Schulte AM, Lai S, Kurtz A, Czubayko F, Riegel AT, Wellstein A (1996) Human trophoblast and choriocarcinoma expression of the growth factor pleiotrophin attributable to germ-line insertion of an endogenous retrovirus. Proc Natl Acad Sci U S A 93:14759–14764PubMedGoogle Scholar
  122. Schulz WA (1998) DNA methylation in urological malignancies (review). Int J Oncol 13:151–167PubMedGoogle Scholar
  123. Schulz WA, Elo JP, Florl AR, Pennanen S, Santourlidis S, Engers R, Buchardt M, Seifert HH, Visakorpi T (2002) Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer 35:58–65PubMedGoogle Scholar
  124. Seemayer CA, Distler O, Kuchen S, Muller-Ladner U, Michel BA, Neidhart M, Gay RE, Gay S (2001) Die Rheumatoide Arthritis: Neuentwicklungen in der Pathogenese unter besonderer Berücksichtigung der synovialen Fibroblasten. Z Rheumatol 60:309–318PubMedGoogle Scholar
  125. Serra C, Mameli G, Arru G, Sotgiu S, Rosati G, Dolei A (2003) In vitro modulation of the multiple sclerosis (MS)-associated retrovirus by cytokines: implications for MS pathogenesis. J Neurovirol 9:637–643PubMedGoogle Scholar
  126. Shaffer LG, Lupski JR (2000) Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu Rev Genet 34:297–329PubMedGoogle Scholar
  127. Shastry BS (2002) Schizophrenia: a genetic perspective (review). Int J Mol Med 9:207–212PubMedGoogle Scholar
  128. Sivori S, Falco M, Della CM, Carlomagno S, Vitale M, Moretta L, Moretta A (2004) CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc Natl Acad Sci U S A 101:10116–10121PubMedGoogle Scholar
  129. Skowronski J, Fanning TG, Singer MF (1988) Unit-length line-1 transcripts in human teratocarcinoma cells. Mol Cell Biol 8:1385–1397PubMedGoogle Scholar
  130. Smiraglia DJ, Szymanska J, Kraggerud SM, Lothe RA, Peltomaki P, Plass C (2002) Distinct epigenetic phenotypes in seminomatous and nonseminomatous testicular germ cell tumors. Oncogene 21:3909–3916PubMedGoogle Scholar
  131. Song JZ, Stirzaker C, Harrison J, Melki JR, Clark SJ (2002) Hypermethylation trigger of the glutathione-S-transferase gene (GSTP1) in prostate cancer cells. Oncogene 21:1048–1061PubMedGoogle Scholar
  132. Stauffer Y, Marguerat S, Meylan F, Ucla C, Sutkowski N, Huber B, Pelet T, Conrad B (2001) Interferon-alpha-induced endogenous superantigen. A model linking environment and autoimmunity. Immunity 15:591–601PubMedGoogle Scholar
  133. Stauffer Y, Theiler G, Sperisen P, Lebedev Y, Jongeneel CV (2004) Digital expression profiles of human endogenous retroviral families in normal and cancerous tissues. Cancer Immun 4:2PubMedGoogle Scholar
  134. Steinhoff C, Schulz WA (2003) Transcriptional regulation of the human LINE-1 retrotransposon L1.2B. Mol Genet Genomics 270:394–402PubMedGoogle Scholar
  135. Stirzaker C, Song JZ, Davidson B, Clark SJ (2004) Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells. Cancer Res 64:3871–3877PubMedGoogle Scholar
  136. Sugimoto J, Matsuura N, Kinjo Y, Takasu N, Oda T, Jinno Y (2001) Transcriptionally active HERV-K genes: identification, isolation, and chromosomal mapping. Genomics 72:137–144PubMedGoogle Scholar
  137. Suter CM, Martin DI, Ward RL (2004) Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue. Int J Colorectal Dis 19:95–101PubMedGoogle Scholar
  138. Sutkowski N, Conrad B, Thorley-Lawson DA, Huber BT (2001) Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity 15:579–589PubMedGoogle Scholar
  139. Swergold GD (1990) Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol Cell Biol 10:6718–6729PubMedGoogle Scholar
  140. Symer DE, Connelly C, Szak ST, Caputo EM, Cost GJ, Parmigiani G, Boeke JD (2002) Human l1 retrotransposition is associated with genetic instability in vivo. Cell 110:327–338PubMedGoogle Scholar
  141. Szyf M (2003) DNA methylation and cancer therapy. Drug Resist Updat 6:341–353PubMedGoogle Scholar
  142. Szyf M (2005) DNA methylation and cancer therapy. Landes Bioscience, Georgetown, pp 1–239Google Scholar
  143. Takai D, Yagi Y, Habib N, Sugimura T, Ushijima T (2000) Hypomethylation of LINE1 retrotransposon in human hepatocellular carcinomas, but not in surrounding liver cirrhosis. Jpn J Clin Oncol 30:306–309PubMedGoogle Scholar
  144. Tchénio T, Casella JF, Heidmann T (2000) Members of the SRY family regulate the human LINE retrotransposons. Nucleic Acids Res 28:411–415PubMedGoogle Scholar
  145. Teitell M, Richardson B (2003) DNA methylation in the immune system. Clin Immunol 109:2–5PubMedGoogle Scholar
  146. Tomilin NV (1999) Control of genes by mammalian retroposons. Int Rev Cytol 186:1–48PubMedGoogle Scholar
  147. Tuck-Muller CM, Narayan A, Tsien F, Smeets DF, Sawyer J, Fiala ES, Sohn OS, Ehrlich M (2000) DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients. Cytogenet Cell Genet 89:121–128PubMedGoogle Scholar
  148. Turker MS (2002) Gene silencing in mammalian cells and the spread of DNA methylation. Oncogene 21:5388–5393PubMedGoogle Scholar
  149. van de Lagemaat LN, Landry JR, Mager DL, Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19:530–536PubMedGoogle Scholar
  150. Villar-Garea A, Fraga MF, Espada J, Esteller M (2003) Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res 63:4984–4989PubMedGoogle Scholar
  151. Vorce RL, Lee B, Howard BH (1994) Methylation-and mutation-dependent stimulation of Alu transcription in vitro. Biochem Biophys Res Commun 203:845–851PubMedGoogle Scholar
  152. Wang-Johanning F, Frost AR, Johanning GL, Khazaeli MB, LoBuglio AF, Shaw DR, Strong TV (2001) Expression of human endogenous retrovirus k envelope transcripts in human breast cancer. Clin Cancer Res 7:1553–1560PubMedGoogle Scholar
  153. Wang-Johanning F, Frost AR, Jian B, Azerou R, Lu DW, Chen DT, Johanning GL (2003) Detecting the expression of human endogenous retrovirus E envelope transcripts in human prostate adenocarcinoma. Cancer 98:187–197PubMedGoogle Scholar
  154. Weichenrieder O, Repanas K, Perrakis A (2004) Crystal structure of the targeting endonuclease of the human LINE-1 retrotransposon. Structure (Camb) 12:975–986Google Scholar
  155. White RJ (2004) RNA polymerase III transcription and cancer. Oncogene 23:3208–3216PubMedGoogle Scholar
  156. Whitelaw E, Martin DI (2001) Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet 27:361–365PubMedGoogle Scholar
  157. Widschwendter M, Jiang G, Woods C, Muller HM, Fiegl H, Goebel G, Marth C, Muller-Holzner E, Zeimet AG, Laird PW, Ehrlich M (2004) DNA hypomethylation and ovarian cancer biology. Cancer Res 64:4472–4480PubMedGoogle Scholar
  158. Wilson MJ, Torkar M, Haude A, Milne S, Jones T, Sheer D, Beck S, Trowsdale J (2000) Plasticity in the organization and sequences of human KIR/ILT gene families. Proc Natl Acad Sci U S A 97:4778–4783PubMedGoogle Scholar
  159. Wong N, Lam WC, Lai PB, Pang E, Lau WY, Johnson PJ (2001) Hypomethylation of chromosome 1 heterochromatin DNA correlates with q-arm copy gain in human hepatocellular carcinoma. Am J Pathol 159:465–471PubMedGoogle Scholar
  160. Woodcock DM, Lawler CB, Linsenmeyer ME, Doherty JP, Warren WD (1997) Asymmetric methylation in the hypermethylated CpG promoter region of the human L1 retrotransposon. J Biol Chem 272:7810–7816PubMedGoogle Scholar
  161. Xing J, Hedges DJ, Han K, Wang H, Cordaux R, Batzer MA (2004) Alu element mutation spectra: molecular clocks and the effect of DNA methylation. J Mol Biol 344:675–682PubMedGoogle Scholar
  162. Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32:e38PubMedGoogle Scholar
  163. Yang N, Zhang L, Zhang Y, Kazazian HH Jr (2003) An important role for RUNX3 in human L1 transcription and retrotransposition. Nucleic Acids Res 31:4929–4940PubMedGoogle Scholar
  164. Yang Z, Boffelli D, Boonmark N, Schwartz K, Lawn R (1998) Apolipoprotein(a) gene enhancer resides within a LINE element. J Biol Chem 273:891–897PubMedGoogle Scholar
  165. Yano M, Ouchida M, Shigematsu H, Tanaka N, Ichimura K, Kobayashi K, Inaki Y, Toyooka S, Tsukuda K, Shimizu N, Shimizu K (2004) Tumor-specific exon creation of the HELLS/SMARCA6 gene in non-small cell lung cancer. Int J Cancer 112:8–13PubMedGoogle Scholar
  166. Yi JM, Kim HM, Kim HS (2004) Expression of the human endogenous retrovirus HERV-W family in various human tissues and cancer cells. J Gen Virol 85:1203–1210PubMedGoogle Scholar
  167. Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340PubMedGoogle Scholar
  168. Yu F, Zingler N, Schumann G, Stratling WH (2001) Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription. Nucleic Acids Res 29:4493–4501PubMedGoogle Scholar
  169. Zendman AJ, Ruiter DJ, Van Muijen GN (2003) Cancer/testis-associated genes: identification, expression profile, and putative function. J Cell Physiol 194:272–288PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Urologische KlinikHeinrich Heine UniversitätDüsseldorfGermany
  2. 2.Computational Molecular BiologyMax Planck Institute for Molecular GeneticsBerlinGermany

Personalised recommendations