Advertisement

Neuroradiologische Diagnostik

  • A. Dörfler
  • M. Forsting
  • M. Rijntjes
  • C. Weiller

Zusammenfassung

Neuroradiologische Untersuchungen umfassen die Untersuchungen von Schädel, Wirbelsüle, Hirn und Rükkenmark mittels Röntgennativbildern, Computertomographie (CT), Magnetresonanztomographie (MRT), Angiographie und Myelographie. Die klassischen Rönt gennativuntersuchungen von Schädel und Wirbelsäule sind in den letzten Jahren zunehmend durch die modernen Schnittbildverfahren verdrängt worden, liefern aber bei bestimmten Fragestellungen noch ergänzende Informationen. Die Schnittbildverfahren Computertomographie und Magnetresonanztomographie sind heute die diagnostischen Säulen bei neuroradiologischen Fragestellungen, wobei die Magnetresonanztomographie sogar funktionelle Informationen liefern kann.

Die Anzahl der diagnostischen Angiographien ist z.T. durch nichtinvasive angiographiesähnliche Verfahren wie die CT-Angiographie und MR-Angio graphie zurückgegangen. Dafür hat sich jedoch der Einsatz durch zahlreiche interventionelle endovaskuläre Techniken deutlich erweitert. Hierzu haben insbesondere die zunehmende Miniaturisierung von Kathetern und die Entwicklung von neuen Embolisationsmaterialien beigetragen.

Durch die kernspintomographische Diagnostik des Spinalkanals verringerte sich die Anzahl der Myelographien deutlich. Wenn jedoch die Weite des Spinalkanals auch unter funktionellen Bedingungen bedeutsam ist, hat die Myelographie immer noch ihren Platz.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kap. 7.1 und 7.2

Weiterführende Literatur

  1. Fink JN, Kumar S, Horkan C, Linfante I, Selim MH, Caplan LR, Schlaug G (2002) The stroke patient who woke up: clinical and radiological features, including diffusion and perfusion MRI. Stroke33: 988–993PubMedGoogle Scholar
  2. Furlan A, Higashida R, Wechsler L et al. (1999) Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in Acute Cerebral Thromboembolism. JAMA 282: 2003–2011CrossRefPubMedGoogle Scholar
  3. Hacke W, Brott T, Caplan L et al. (1999) Thrombolysis in acute ischemic stroke: controlled trials and clinical experience. Neurology 53: S3–14PubMedGoogle Scholar
  4. Hacke W, Kaste M, Fieschi C et al. (1998) Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet 17: 1245–1251Google Scholar
  5. Jansen O, Heiland S, Schellinger P (1998) Neuroradiologische Diagnostik beim akuten arteriellen Hirninfarkt. Momentaner Stellenwert neuer Verfahren. Nervenarzt 69: 465–471CrossRefPubMedGoogle Scholar
  6. Klingebiel R, Bohner G, Zimmer C, Rogalla P, Masuhr F, Lehmann R (2002) Einsatz der Mehrschicht-Spiral-CT in der neuroradiologischen Bildgebung. Nervenarzt 73: 729–735CrossRefPubMedGoogle Scholar
  7. Molyneux A, Kerr R, Stratton I, Sandercock P, Clarke M, Shrimpton J, Holman R, International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group (2002) International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet 26(360): 1267–1274Google Scholar
  8. Osborn AG (2001) Diagnostic neuroradiology. Mosby, St. LouisGoogle Scholar
  9. Prince M, Grist T, Debatin J (2002) 3D Contrast MR Angiography, 2nd edn. Springer, Berlin Heidelberg New York TokioGoogle Scholar
  10. Sartor K (Hrsg) (2001) Neuroradiologie. Thieme, StuttgartGoogle Scholar
  11. Saver JL (2001) Intra-arterial thrombolysis. Neurology 57(5 Suppl 2): 58–60Google Scholar
  12. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333: 1581–1587Google Scholar

Literatur zu Kap. 7.3

  1. Andres FG, Gerloff C (1999) Coherence of sequential movements and motor learning. J Clin Neurophysiol 16(6): 520–527PubMedGoogle Scholar
  2. Baker JT, Donoghue JP et al. (1999) Gaze direction modulates finger movement activation patterns in human cerebral cortex. J Neurosci 19(22): 10044–10052PubMedGoogle Scholar
  3. Bornhovd K, Quante M et al. (2002) Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 125 (Pt 6): 1326–1336CrossRefPubMedGoogle Scholar
  4. Bremmer F, Schlack A et al. (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29(1): 287–296CrossRefPubMedGoogle Scholar
  5. Buchel C, Bornhovd K et al. (2002) Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci 22(3): 970–976PubMedGoogle Scholar
  6. Buchel C, Coull JT et al. (1999) The predictive value of changes in effective connectivity for human learning. Science 283(5407): 1538–1541PubMedGoogle Scholar
  7. Buchel C, Price C et al. (1998) Different activation patterns in the visual cortex of late and congenitally blind subjects. Brain 121 (Pt 3): 409–419PubMedGoogle Scholar
  8. Buhmann C, Glauche V et al. (2003) Pharmacologically modulated fMRI-cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain 126 (Pt 2): 451–461CrossRefPubMedGoogle Scholar
  9. Carr JH, Shepherd RE (1987) Motor Relearning Programme for Stroke. Butterworth/Heinemann Physiotherapy, LondonGoogle Scholar
  10. Dettmers C, Fink GR et al. (1995) Relation between cerebral activity and force in the motor areas of the human brain. J Neurophysiol 74(2): 802–815PubMedGoogle Scholar
  11. Dettmers C, Liepert J et al. (1999) Abnormal motor cortex organization contralateral to early upper limb amputation in humans. Neurosci Lett 263(1): 41–44CrossRefPubMedGoogle Scholar
  12. Feydy A, Carlier R et al. (2002) Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke 33(6): 1610–1617CrossRefPubMedGoogle Scholar
  13. Fink GR, Frackowiak RS et al. (1997) Multiple nonprimary motor areas in the human cortex. J Neurophysiol 77(4): 2164–2174PubMedGoogle Scholar
  14. Friston KJ, Price CJ (2001) Dynamic representations and generative models of brain function. Brain Res Bull 54(3): 275–285CrossRefPubMedGoogle Scholar
  15. Friston KJ, Price CJ et al. (1996) The trouble with cognitive subtraction. Neuroimage 4(2): 97–104CrossRefPubMedGoogle Scholar
  16. Haxby JV, Gobbini MI et al. (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539): 2425–2430CrossRefPubMedGoogle Scholar
  17. Heiss WD, Kessler J et al. (1999) Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Ann Neurol 45(4): 430–438CrossRefPubMedGoogle Scholar
  18. Jennings JM, McIntosh AR et al. (1997) Cognitive subtractions may not add up: the interaction between semantic processing and response mode. Neuroimage 5(3): 229–239CrossRefPubMedGoogle Scholar
  19. Johansen-Berg H, Rushworth MF et al. (2002) The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci U S A 99(22): 14518–14523CrossRefPubMedGoogle Scholar
  20. Juptner M, Weiller C (1995) Review: does measurement of regional cerebral blood flow refelct synaptic activity? — Implications for PET and fMRI. Neuroimage 2: 148–156Google Scholar
  21. Kessler J, Thiel A et al. (2000) Piracetam improves activated blood flow and facilitates rehabilitation of poststroke aphasic patients. Stroke 31(9): 2112–2116PubMedGoogle Scholar
  22. Kleinschmidt A, Nitschke MF et al. (1997) Somatotopy in the human motor cortex hand area. A high-resolution functional MRI study. Eur J Neurosci 9(10): 2178–2186PubMedGoogle Scholar
  23. Levy CE, Nichols DS et al. (2001) Functional MRI evidence of cortical reorganization in upper-limb stroke hemiplegia treated with constraint-induced movement therapy. Am J Phys Med Rehabil 80(1): 4–12PubMedGoogle Scholar
  24. Liepert J, Classen J et al. (1998) Task-dependent changes of intracortical inhibition. Exp Brain Res 118(3): 421–426CrossRefPubMedGoogle Scholar
  25. Liu Y, Gao JH et al. (1999) Temporal dissociation of parallel processing in the human subcortical outputs. Nature 400(6742): 364–367PubMedGoogle Scholar
  26. MacSweeney M, Woll B et al. (2002) Neural systems underlying British Sign Language and audio-visual English processing in native users. Brain 125 (Pt 7): 1583–1593CrossRefPubMedGoogle Scholar
  27. Maguire EA, Gadian DG et al. (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA 97(8): 4398–4403CrossRefPubMedGoogle Scholar
  28. Merzenich MM, Nelson RJ et al. (1984) Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol 224(4): 591–605CrossRefPubMedGoogle Scholar
  29. Musso M, Weiller C et al. (1999) Training-induced brain plasticity in aphasia. Brain 122 (Pt 9): 1781–1790CrossRefPubMedGoogle Scholar
  30. Nelles G, Spiekramann G et al. (1999) Evolution of functional reorganization in hemiplegic stroke: a serial positron emission tomographic activation study. Ann Neurol 46(6): 901–909CrossRefPubMedGoogle Scholar
  31. Pariente J, Loubinoux I et al. (2001) Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke. Ann Neurol 50(6): 718–729CrossRefPubMedGoogle Scholar
  32. Pascual-Leone A, Torres F (1993) Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain 116 (Pt 1): 39–52PubMedGoogle Scholar
  33. Price CJ, Friston KJ (1997) Cognitive conjunction: a new approach to brain activation experiments. Neuroimage 5 (4 Pt 1): 261–270CrossRefPubMedGoogle Scholar
  34. Rainville P, Duncan GH et al. (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277(5328): 968–971CrossRefPubMedGoogle Scholar
  35. Rijntjes M, Dettmers C et al. (1999) A blueprint for movement: functional and anatomical representations in the human motor system. J Neurosci 19(18): 8043–8048PubMedGoogle Scholar
  36. Rijntjes M, Tegenthoff M et al. (1997) Cortical reorganization in patients with facial palsy. Ann Neurol 41(5): 621–630CrossRefPubMedGoogle Scholar
  37. Rocca MA, Falini A et al. (2002) Adaptive functional changes in the cerebral cortex of patients with nondisabling multiple sclerosis correlate with the extent of brain structural damage. Ann Neurol 51(3): 330–339CrossRefPubMedGoogle Scholar
  38. Rocca MA, Pagani E et al. (2003) Functional cortical changes in patients with multiple sclerosis and nonspecific findings on conventional magnetic resonance imaging scans of the brain. Neuroimage 19(3): 826–836CrossRefPubMedGoogle Scholar
  39. Sach M, Winkler G et al. (2003) Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain (Electronic publishing ahead of print)Google Scholar
  40. Salmelin R, Schnitzler A et al. (2000) Single word reading in developmental stutterers and fluent speakers. Brain 123 (Pt 6): 1184–1202CrossRefPubMedGoogle Scholar
  41. Schaechter JD, Kraft E et al. (2002) Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: a preliminary study. Neurorehabil Neural Repair 16(4): 326–338PubMedGoogle Scholar
  42. Seitz RJ, Hoflich P et al. (1998) Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch Neurol 55(8): 1081–1088CrossRefPubMedGoogle Scholar
  43. Sommer M, Koch MA et al. (2002) Disconnection of speech-relevant brain areas in persistent developmental stuttering. Lancet 360(9330): 380–383CrossRefPubMedGoogle Scholar
  44. Stephan KM, Fink GR et al. (1995) Functional anatomy of the mental representation of upper extremity movements in healthy subjects. J Neurophysiol 73(1): 373–386PubMedGoogle Scholar
  45. Taub E, Uswatte G et al. (1999) Constraint-Induced Movement Therapy: a new family of techniques with broad application to physical rehabilitation — a clinical review. J Rehabil Res Dev 36(3): 237–251PubMedGoogle Scholar
  46. Thomalla G, Glauche V, Koch MA et al. (2004) Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke. Neuroimage 22: 1767–1774CrossRefPubMedGoogle Scholar
  47. Warburton E, Price CJ et al. (1999) Mechanisms of recovery from aphasia: evidence from positron emission tomography studies. J Neurol Neurosurg Psychiatry 66(2): 155–161PubMedGoogle Scholar
  48. Warburton E, Wise RJ et al. (1996) Noun and verb retrieval by normal subjects. Studies with PET. Brain 119 (Pt 1): 159–179PubMedGoogle Scholar
  49. Watson JD, Myers R et al. (1993) Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb Cortex 3(2): 79–94PubMedGoogle Scholar
  50. Weiller C, Chollet F et al. (1992) Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 31(5): 463–472CrossRefPubMedGoogle Scholar
  51. Weiller C, Isensee C et al. (1995a) Recovery from Wernicke’s aphasia: a positron emission tomographic study. Ann Neurol 37(6): 723–732CrossRefPubMedGoogle Scholar
  52. Weiller C, May A et al. (1995b) Brain stem activation in spontaneous human migraine attacks. Nat Med 1(7): 658–660CrossRefPubMedGoogle Scholar
  53. Weiller C, Ramsay SC et al. (1993) Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol 33(2): 181–189PubMedGoogle Scholar
  54. Weiller C, Rijntjes M (1999) Cluster headache: phrenology revisited? Nat Med 5(7): 732–733CrossRefPubMedGoogle Scholar
  55. Wise R, Chollet F et al. (1991) Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain 114 (Pt 4): 1803–1817PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag Heidelberg 2006

Authors and Affiliations

  • A. Dörfler
    • 1
  • M. Forsting
    • 2
  • M. Rijntjes
    • 3
  • C. Weiller
    • 4
  1. 1.Abteilung für NeuroradiologieFriedrich-Alexander-Universität Erlangen-NürnbergErlangen
  2. 2.Neuroradiologische AbteilungUniversitätsklinikum EssenEssen
  3. 3.Klinik und Poliklinik für NeurologieUniversitätskrankenhaus Hamburg-EppendorfHamburg
  4. 4.Neurologische UniversitätsklinikUniversitätsklinikum FreiburgFreiburg

Personalised recommendations